
®

KOL/MCK - User Guide

© 2024 Carl Peeraer

KOL / MCK & Documentation created by Vladimir Kladov

3

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Table of Contents

1. Foreword

 13

1.1 Vladimir Kladov .. 15

1.2 What's new? ... 15

2. Introduction

 17

2.1 KOL Start ... 19

2.1.1 KOL architectural concepts .. 19

2.1.2 Further development of KOL. .. 22

2.2 First conclusions ... 24

2.2.1 Save memory costs .. 25

2.3 Mirror Classes Kit ... 25

2.4 Search for information... .. 26

2.5 Compatibility with VLC projects ... 27

2.6 KOL and the CBuilder compiler .. 28

3. Installing KOL and MCK

 31

3.1 Installing KOL .. 32

3.2 Installing MCK ... 32

3.3 KOL64 and Free Pascal .. 33

3.4 Conditional Compilation Symbols ... 37

4. Programming in KOL

 47

4.1 String Functions .. 49

4.1.1 String Functions - Syntax ... 50

4.2 Working with long integers & Floating Point .. 59

4.2.1 Long Integers & Floating Point - Syntax ... 60

4.3 Working with Date and Time ... 62

4.3.1 Date and Time - Syntax .. 63

4.4 Files and Folders ... 67

4.4.1 Files and Folders - Syntax .. 70

4.5 Working with the Registry ... 78

4.5.1 Registry functions - Syntax ... 79

4.6 Working with Windows ... 81

4.6.1 Working with Windows - Syntax .. 82

4.7 Messageboxes .. 86

4.7.1 Messageboxes - Syntax .. 86

4.8 Clipboard Operations ... 88

4.8.1 Clipboard Operations - Syntax .. 88

4.9 Arithmetics, geometry, utilities ... 89

4.9.1 Arithmetics, geometry, utilities - Syntax ... 89

4

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Table of Contents

4.10 Sorting Data .. 91

4.10.1 Sorting Data - Syntax ... 91

4.11 Object Type Hierarchy .. 92

4.11.1 _TObj and TObj objects ... 92
4.11.1.1 TObj - Syntax .. 94

4.11.2 Object inheritance from TObj .. 96

4.11.3 Event Handlers ... 98

4.12 TList Object (Generic List) ... 100

4.12.1 Speeding up work with large Lists ... 102

4.12.2 TList Object - Syntax ... 102

4.13 Data Streams in KOL ... 105

4.13.1 Data Streams - Syntax .. 108

4.14 List of Strings ... 115

4.14.1 List of Strings - Syntax .. 118

4.15 List of Files and Directories .. 126

4.15.1 List of Files and Directories - Syntax .. 127

4.16 Tracking Changes on Disk ... 130

4.16.1 Tracking Changes on Disk - Syntax .. 130

4.17 INI Files .. 131

4.17.1 INI Files - Syntax ... 133

4.18 An Array of Bit Flags ... 135

4.18.1 An Array of Bit Flags - Syntax ... 136

4.19 Tree in Memory .. 137

4.19.1 Tree in Memory - Syntax .. 138

4.20 Elements of Graphics ... 141

4.20.1 Elements of Graphics - Syntax ... 146

4.20.2 TCanvas - Syntax .. 147

4.20.3 TGraphicTool - Syntax .. 151

4.20.4 Color Conversion - Syntax .. 155

4.21 Image in Memory ... 156

4.21.1 The methods and properties of the TBitmap object ... 157
4.21.1.1 Pixel descriptor and format ... 157

4.21.1.2 Dimensions ... 158

4.21.1.3 Loading and Saving .. 158

4.21.1.4 Drawing an Image in a different Context ... 159

4.21.1.5 Canvas and modification of your own image through it ... 159

4.21.1.6 Direct access to pixels and image modification without canvas ... 160

4.21.1.7 DIB image parameters ... 161

4.21.2 Image in Memory - Syntax ... 161

4.22 Pictogram .. 170

4.22.1 Pictogram - Syntax ... 171

4.23 List of Images .. 174

4.23.1 The methods and properties of the TImageList object ... 175

5

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Table of Contents

4.23.1.1 Descriptor and parameters ... 175

4.23.1.2 Image manipulation: add, remove, load .. 175

4.23.1.3 Accessing images .. 176

4.23.1.4 Drawing ... 176

4.23.2 List of Images - Syntax .. 177

4.24 Before getting started with Visual Objects .. 183

4.25 Common Properties and Methods - TControl ... 184

4.25.1 Properties and Methods of window objects ... 185
4.25.1.1 Window handle .. 185

4.25.1.2 Parent and Child controls .. 186

4.25.1.3 Availability and visibility ... 187

4.25.1.4 Position and dimensions ... 188

4.25.1.5 Painting ... 190

4.25.1.6 Window text and font for the window ... 191

4.25.1.7 Window color and window frame .. 191

4.25.1.8 Messages (all window objects) .. 192

4.25.1.9 Dispatching messages in KOL ... 193

4.25.1.10 Keyboard and tabs between controls ... 196

4.25.1.11 Mouse and mouse cursor .. 197

4.25.1.12 Menu and Help .. 198

4.25.1.13 Form and applet properties, methods, and events ... 198

4.25.1.13.1 Appearance (form, applet) ... 198
4.25.1.13.2 Messages (form, applet) ... 200

4.25.1.13.3 OnFormClick event (for form) .. 201
4.25.1.14 Modal dialogs ... 202

4.25.1.15 Reference system ... 202

4.25.2 Common Properties and Methods - Syntax .. 203

4.26 Programming in KOL (without MCK) .. 279

4.27 MCK Design ... 281

4.27.1 Creation of on MCK project ... 281

4.27.2 Form customization ... 285

4.27.3 Coding .. 287

4.28 Application graphic resources ... 287

4.29 Graphics Resources and MCK's .. 288

5. Window Objects

 291

5.1 Labels (label, label effect) .. 293

5.2 Panel (Panel, Gradient Panel, Gradient Style) ... 294

5.3 Groupbox .. 296

5.4 Paintbox .. 296

5.5 Imageshow .. 297

5.6 Splitter ... 298

5.7 Scrollbar .. 299

5.8 Progressbar ... 300

5.9 Scrollbox ... 300

6

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Table of Contents

5.10 Buttons .. 301

5.11 Switches (Checkbox, Radiobox) ... 304

5.12 Visual objects with a list of items .. 304

5.13 Text input fields (editbox, memo, richedit) ... 305

5.13.1 Text input field constructors (edit) .. 306

5.13.2 Specifics of using common properties (edit) ... 306

5.13.3 Input field options (edit) ... 307

5.13.4 General properties of input fields (edit) ... 308

5.13.5 Empowering: direct API access (edit) .. 309

5.13.6 Features of Rich Edit .. 309

5.13.7 Mirrored input field classes (edit) ... 314

5.14 List of Strings (Listbox) .. 314

5.15 Combobox ... 316

5.16 General List (List View) ... 318

5.16.1 List Views ... 320

5.16.2 Column management .. 320

5.16.3 Working with items and selection ... 321

5.16.4 Adding and removing items .. 322

5.16.5 Element values and their change .. 322

5.16.6 Location of items ... 323

5.16.7 List view ... 324

5.16.8 Sorting and searching .. 324

5.17 Tree View .. 325

5.17.1 Properties of the whole tree .. 327

5.17.2 Adding and removing nodes ... 327

5.17.3 Properties of parent nodes .. 328

5.17.4 Properties of child nodes ... 328

5.17.5 Node attributes: text, icons, states ... 328

5.17.6 Node geometry and drag ... 329

5.17.7 Editing text ... 329

5.18 Tool Bar ... 330

5.18.1 General properties, methods, events .. 333

5.18.2 Setting up the ruler .. 334

5.18.3 Button properties .. 335

5.18.4 Some features of working with the toolbar .. 335

5.19 Tab Control ... 336

5.20 Frames (TKOLFrame) .. 339

5.21 Data Module (TKOLDataModule) ... 340

5.22 The Form ... 341

5.23 "Alien" Panel .. 342

5.24 MDI Interface .. 342

7

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Table of Contents

5.25 DateTime Picker ... 344

5.26 Visual objects - Syntax .. 344

5.26.1 Function NewLabel .. 346

5.26.2 Function NewWordWrapLabel .. 346

5.26.3 Function NewLabelEffect .. 347

5.26.4 Function NewPanel ... 347

5.26.5 Function NewGradientPanel ... 347

5.26.6 Function NewGradientPanelEx ... 347

5.26.7 Function NewGroupBox .. 348

5.26.8 Function NewPaintBox .. 348

5.26.9 Function ImageShow ... 348

5.26.10 Function NewSplitter ... 348

5.26.11 Function NewScrollBar .. 349

5.26.12 Function NewProgressBar ... 350

5.26.13 Function NewScrollBox .. 350

5.26.14 Function NewButton ... 350

5.26.15 Function NewBitBtn .. 351

5.26.16 Function NewCheckBox ... 352

5.26.17 Function NewCheckBox3State .. 353

5.26.18 Function NewRadiobox ... 353

5.26.19 Function NewEditBox .. 353

5.26.20 Function NewRichEdit ... 354

5.26.21 Function NewListbox ... 358

5.26.22 Function NewCombobox ... 359

5.26.23 Function NewListView ... 360

5.26.24 Function NewTreeView ... 362

5.26.25 Function NewToolbar .. 364

5.26.26 Function NewTabControl .. 366

5.26.27 Function NewForm .. 367

5.26.28 Function NewApplet .. 369

5.26.29 Function NewMDIClient .. 370

5.26.30 Function NewMDIChild ... 370

5.26.31 Function NewDateTimePicker ... 370

6. Graphic Visual Elements

 371

6.1 Graphic Label .. 373

6.2 Graphic Canvas for Drawing .. 374

6.3 Graphic Button .. 374

6.4 Graphic Flags ... 375

6.5 Graphic Input Field ... 375

6.6 XP Themes .. 376

7. Non-Visual Objects

 377

8

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Table of Contents

7.1 Menu (TMenu) .. 379

7.1.1 Events for the entire menu or its child items .. 381

7.1.2 Events, methods, properties of an individual menu item as an object 382

7.1.3 Access to properties of subordinate menu items ... 383

7.1.4 Main menu .. 383

7.1.5 Pop-up menu ... 384

7.1.6 Accelerators ... 385

7.1.7 Menu at MCK ... 385

7.1.8 Menu - Syntax .. 386

7.2 Tray Icon (TTrayIcon) .. 394

7.2.1 Tray Icon - Syntax ... 395

7.3 File Selection Dialog (TopenSaveDialog) .. 397

7.3.1 File Selection Dialog - Syntax ... 399

7.4 Directory Selection Dialog (TOpenDirDialog) .. 401

7.4.1 Directory Selection Dialog - Syntax ... 403

7.5 Alternative Directory Selection Dialog (TOpenDirDialogEX) ... 404

7.5.1 Alternative Directory Selection Dialog - Syntax .. 407

7.6 Color Selection Dialog (TColorDialog) .. 409

7.6.1 Color Selection Dialog - Syntax .. 410

7.7 Clock (TTimer) ... 411

7.7.1 Multimedia Timer (TMMTimer) .. 413

7.7.2 Clock - Syntax ... 414

7.8 Thread, or thread of commands (TThread) ... 416

7.8.1 Thread - Syntax .. 419

7.9 Pseudo Streams .. 422

7.10 Action and ActionList ... 424

7.10.1 Action and ActionList - Syntax ... 425

8. KOL Extensions

 429

8.1 Exception Handling ... 432

8.1.1 Exception Handling - Syntax .. 434

8.2 Floating Point Math .. 436

8.3 Complex Numbers .. 436

8.4 Dialogues .. 437

8.4.1 Font selection .. 437

8.4.2 Find and replace dialog ... 437

8.4.3 System dialogue "About the program" ... 437

8.5 Printing and Preparing Reports ... 437

8.5.1 Dialogs for choosing a printer and printing settings. ... 438

8.5.2 Printing reports .. 438

8.6 Working with Databases .. 439

9

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Table of Contents

8.6.1 KOLEDB .. 439

8.6.2 KOLODBC .. 440

8.6.3 KOLIB .. 441

8.6.4 KOLSQLite ... 441

8.6.5 Working with DBF files and other databases .. 441

8.7 Graphics Extensions ... 441

8.7.1 Metafiles WMF, EMF ... 442
8.7.1.1 Metafiles - Syntax .. 442

8.7.2 JPEG images ... 443

8.7.3 GIF Images, GIFShow, AniShow ... 444

8.7.4 KOLGraphic Library .. 446

8.7.5 Using GDI + (KOLGdiPlus) ... 446

8.7.6 Other image formats .. 447

8.7.7 Additional utilities for working with graphics ... 447

8.7.8 Open GL: KOLOGL12 and OpenGLContext modules ... 447

8.8 Sound and Video ... 447

8.8.1 KOLMediaPlayer .. 447
8.8.1.1 KOLMediaPlayer - Syntax ... 449

8.8.2 PlaySoundXXXX .. 459

8.8.3 KOLMP3 .. 460

8.8.4 Other means for working with sound .. 460

8.9 Working with Archives ... 460

8.9.1 TCabFile ... 460
8.9.1.1 TCabFile - Syntax .. 460

8.9.2 KOLZLib .. 462

8.9.3 KOL_UnZip ... 462

8.9.4 KOLZip .. 462

8.9.5 DIUCL .. 462

8.9.6 KOLmdvLZH .. 463

8.10 Cryptography .. 463

8.10.1 TwoFish .. 463

8.10.2 KOLMD5 ... 463

8.10.3 KOLAES ... 463

8.10.4 KOLCryptoLib ... 463

8.11 ActiveX .. 463

8.11.1 Active Script ... 464

8.12 OLE and DDE ... 464

8.12.1 KOL DDE ... 464

8.12.2 Drag-n-Drop ... 464

8.13 NET .. 464

8.13.1 Sockets and protocols .. 465

8.13.2 Working with ports .. 465

8.13.3 CGI .. 466

10

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Table of Contents

8.14 System Utilities ... 466

8.14.1 NT services ... 466

8.14.2 Control Panel Applet (CPL) .. 467

8.14.3 Writing your own driver .. 467

8.14.4 NT Privilege Management ... 467

8.15 Other Useful Extensions ... 467

8.15.1 Working with shortcuts, registering file extensions .. 467

8.15.2 Sharing memory between applications .. 467

8.15.3 Saving and restoring form properties .. 467

8.15.4 Additional buttons on the title bar ... 468

8.15.5 Macroassembly in memory (PC Asm) .. 468

8.15.6 Collapse Virtual Machine .. 469

8.15.7 FormCompact Property ... 470

8.16 Additional Visual Objects ... 470

8.16.1 Progress bar ... 470

8.16.2 Track bar (marked ruler) .. 471

8.16.3 Header (tables) .. 471

8.16.4 Font selection .. 471

8.16.5 Color selection ... 471

8.16.6 Disk selection ... 471

8.16.7 Entering the path to a directory .. 472

8.16.8 Selecting a file name filter ... 472

8.16.9 List of files and directories ... 472

8.16.10 IP Input ... 472

8.16.11 Calendar and date and / or time selection ... 472

8.16.12 Double List ... 472

8.16.13 Two-position button (up-down) .. 473

8.16.14 Button, non-rectangular .. 473

8.16.15 Extended panel .. 473

8.16.16 Label with image .. 473

8.16.17 Separator ... 473

8.16.18 Table .. 473

8.16.19 Syntax highlighting .. 473

8.16.20 GRush Controls .. 474

8.16.21 Other additional visual elements .. 476

8.16.22 Tooltips .. 477

8.17 XP Themes .. 477

8.18 Extensions of MCK itself ... 479

8.18.1 Improved font customization .. 479

8.18.2 Alternative component icons .. 479

9. Working with Extensions

 481

9.1 Installing Extensions ... 482

11

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Table of Contents

9.2 Using Extensions ... 482

9.3 Developing your own Extensions ... 483

9.3.1 Development of non-visual extensions ... 483

9.3.2 Development of visual extensions (controls) .. 484

10. Appendix

 487

10.1 Errors of programmers starting to learn KOL ... 488

10.2 Developer Tools .. 491

10.3 Demonstration Examples ... 491

10.4 KOL with Classes instead of Objects .. 494

Foreword

Foreword from the author of this document: Carl Peeraer

14

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Foreword

1 Foreword

All this documentation was created by Vladimir Kladov, the designer of the KOL/MCK projects.

Some contributions also come from other authors such as Thaddy De Koning.

This user guide is just an attempt to summarize the information about KOL/MCK in a format that

can be easily used while programming. Vladimir Kladov 's KOL manual was translated from

Russian by Carl Peeraer.

The user guide is made available as:

· Responsive Website: This version is currently hosted at https://www.artwerp.be, the website of

Carl Peeraer, the compiler of this user guide. It is possible that this version will disappear

sooner or later. Those who wish to save this information themselves can download the

following formats:

· Executable Windows EXE file: This is a Windows EXE file, guaranteed virus-free, even though it

might show a false positive in Virustotal.

· PDF that can be printed for reference

· CHM helpfile: After downloading the CHM file, in properties of the file, the block must be

cleared. This is a limitation of Windows after downloading CHM files.

· EPUB EBook file: Book to read on an eReader such as KOBO - limited functionality!

As the creator of this user guide, I refer to the respective authors for further questions and

information. Whenever this manual is written in the I form, it is Vladimir Kladov who is

speaking. I have not changed this out of respect for the hard work Vladimir Kladov has put into

programming KOL/MCK and all the documentation. Therefore, all credit always goes to him.

The main source of information for the version of KOL / MCK being used is still the source code

of the relevant files. Using the genius xHelpGen utility, help files can be created in HTML

format. Thus, this manual is in no way a substitute for the information contained in the source

files of KOL / MCK!

There are many active links in this user guide, pointing to more information about the topic.

However, not all topics contain links, but that has been solved by the powerful search function

integrated in this guide.

I wrote this tutorial for myself, to make programming with KOL / MCK easier for myself. I don't

know if this work can be of any use to others. If it is: use the document. If not: delete the

document from your computer. Suggestions are welcome, but there is no guarantee of

response or implementation of your suggestion(s). Negative remarks or comments will be

ignored.

© 2024 Carl Peeraer

Version: 1.1.4

183

https://www.artwerp.be/kol/index.html
https://www.artwerp.be,
https://www.artwerp.be/kol/kol-user_guide.exe
https://www.artwerp.be/kol/kol-user_guide.pdf
https://www.artwerp.be/kol/kol-user_guide.chm
https://www.artwerp.be/kol/kol-user_guide.epub

15

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Foreword

1.1 Vladimir Kladov

Vladimir Kladov

Age: 58 (at year 2024).

(~40 on the left photo)

Married, a son Alexander, 18 years.

Education: Novosibirsk State University, 1995. Mechanics, Applied

Mathematics.

Job: Chief Engineer, Novosibirsk Chemical Concentration Plant (NCCP).

Experience: Delphi32, C++, C#, Assembler (TASM, MASM), FoxPro,

SQL, ...

Travels: Moscow, St.Petersburg, Pushkin, Petergof, Kronstadt, Tikhvin,

Staraya Ladoga, Paris, Hannofer, Bremen, Chabarovsk, Krasnodar, Sochi,

Ghelendzhik.

Location: Novosibirsk, Russia.

1.2 What's new?

Here are the updates to this user-guide:

Version 1.1.0 - 17 August 2024:

· New Web User Interface:

o forward and backward buttons to browse chapters smoothly

o Better responsive mode with navigation buttons at the bottom of each page (for those who

want to read on Smartphone)

· Download chapter, with all important KOL/MCK downloads

Version 1.1.1 - 19 August 2024:

· Cosmetic enhancements

16

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Foreword
What's new?

Version 1.1.2 - 20 August 2024:

· Update in Clipboard Operations chapter: free license for MultiClipBoard for readers of

this User-Guide: https://www.artwerp.be/MultiClipboard/setup_multiclipboard.exe

· New Chapter TAction and TActionList

Version 1.1.3 - 21 August 2024:

· A mass of additional links to more detailed information

· Various cosmetic improvements

Version 1.1.4 - 5 November 2024:

· Extra functions added in chapter: Messageboxes : ShowQuestion, ShowQuestionEx,

ShowMsgModal.

· Carl Peeraer, the author of this user guide has added a new program: VrtDrive to link

directories to a drive letter. This is a GUI replacement of the old subst console program.

However, VrtDrive will keep the assigned links even after logging off or rebooting the

computer.

88

424

86

493

493

https://www.artwerp.be/MultiClipboard/setup_multiclipboard.exe

Introduction

Introduction by Vladimir Kladov, creator of KOL/MCK

18

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Introduction

2 Introduction

Water wears away the stone.

A rolling stone gathers no moss.

Patience and a little effort.

(Russian folk proverbs)

This description was conceived by me, the author of this library, and started by numerous

requests from KOL users, and from those who would like to learn how to use this (I'm not afraid

to be immodest) wonderful tool. First of all, I'll talk a little about the origins of the Key Objects

Library, abbreviated: KOL, and let me use this word in masculine rather than feminine, even

though it is a library. It's just that there is a consonant Russian word "stake" just of the masculine

gender, and it's more convenient for me. Someone does not like this word too much, but what

can you do about it, there is no comrade for taste and color, as they say.

A bit of history

Around 1996 or 97, I started thinking about moving from the surviving DOS platform to the

Windows platform. At that time, the operating system Windows 95 had already gone into

life, sweeping away the OS / 2 monster on its way, and filling almost the entire niche of

personal computers. It was necessary to change, and for a programmer such a transition

means, first of all, the need to choose a new tool for work. It seemed most natural to take

Borland C ++ (version 4 or 5) and just in addition to what was already known, learn the

Windows API. But now I understand it. And then it was not obvious. And my attempts to

program in Windows one after another have not been crowned with success. I continued to

sculpt DOS-style interfaces, because it was easier for me to use a bunch of my own work-

ups than to learn something how to do a message dispatching loop between windows. And

in general it was not clear: why such a cycle is needed? After all, my program is that when I

want, then I output when I need to - then I expect input. At least that's what I thought then.

Eventually, when I had some free time, I started experimenting with new compilers

designed specifically for the new environment (Windows 95 and Windows NT 3.5). And on

the advice of my good friend Alexei Shadrin (admins - hello from programmers!), I also

tried Delphi 2, which was just released. And then he was amazed at the simplicity of work

and, most importantly, by the obvious logic of work in the IDE. (I was also pleased with the

high speed of compilation of the code, I must pay tribute to Borland - I have never seen

such a fast compiler).

For the sake of such convenience in work, I agreed to sacrifice attachment to C / C ++, and

remember how to write code in Pascal. (At first, I was sick of the need to write: = instead of

just =, and begin / end instead of curly braces *, but soon I got used to: =, and appreciated

the obvious advantages of begin / end for people with non-100% vision , for us this is a

much more convenient notation than curly braces, which are easy to confuse with normal

ones, or even not notice at all). I will only add that the first working program was ready in a

couple of days (!), And it worked perfectly in a multi-window environment, doing exactly

19

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Introduction

what was required of it (printing payment orders, and what did you think is the most

demanded software in the conditions spontaneously developing LLC and PE).

From that moment on, I became a staunch supporter of Pascal, bought the books on Delphi

needed for a beginner, even learned how to create components and made a couple of my

own (as I remember, these were TCloudHint and TBaloonHint - to show tooltips in the form

of intricate windows - clouds and the fact that comic book heroes use it to make speeches).

But gradually I began to be very unhappy with one rather significant detail, namely: the size

of the programs received. It turned out to be gigantic, and in order, for example, to upload

my works on the Internet (and I assumed that I would be engaged in blooming), a rather

thick channel was required. In addition, the disk space was also not rubber (I remind you: in

those days a 40 megabyte hard drive was the norm, now 200 Gigabytes does not seem to

be something excessive).

I thought about this problem, and finally decided to make an alternative class library that

would allow doing smaller programs. I named it XCL (eXtreme Class Library). It really was

"extreme". Without fully understanding the true reasons for the monstrousness of Delphi

programs, I, among other things, decided in the heat of the moment to abandon the use of

the Windows API wherever possible. Those. windows were registered with Windows, but

were used only as an underlay — all rendering and other interactions were handled by their

own code. Surprisingly, however, the programs still came out smaller than the VCL. True, as

we moved forward, the tasks became more complicated, and I did not manage to get to the

implementation of my own TListView.

Thousands of hours of programming spent on XCL, although I barely used the API, taught me

the basics of the Application Programming Interface. I finally realized my mistake when the

project was almost a year old. And then I conceived and started another project - the Key

Objects Library, in which the emphasis was precisely on using the windows' ability to draw

themselves and process most of the messages on their own.

2.1 KOL Start

2.1.1 KOL architectural concepts

Analysis of the reasons for the cumbersome application size. KOL architectural

concepts

Small spool but precious.

(Russian folk saying)

But before starting, I analyzed more carefully the possible reasons for the increase in the size of

the code, and thought about various ways to prevent this situation in my library. The main

reason for the cumbersome size of programs in which classes are used is the fact that some

classes use others, those, in turn, others, and so on, and so on, to such an extent that it is no

20

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Introduction
KOL Start

longer possible to break the links. You specify in uses a link to the Forms unit, or to Dialogs, and

that's all - your 350-400 Kilobytes are added to the program. This means that you need to

create your own class hierarchy, in which you only use TObject as an ancestor for all your classes,

and in no case address all the goodness that is ready for use in the VCL.

I decided to go even further and "remember" the very basics of Object Pascal. ("Remember" is

in quotation marks, because I myself did not have to write in Object Pascal, as I mentioned

above, I came to Delphi from C / C ++, and before that I took Pascal only exams at the

university, and I strongly scolded this wonderful language, just not understanding its benefits).

So, in Object Pascal there is the word object, which means nothing more than "structure" + "set

of methods". This is what the classes were later born from. My experiments have shown that a

simple object created using the word object saves program size (and most importantly, if classes

are not used at all, but only objects, then a few more kilobytes of code from system modules are

saved from the very beginning) of course.

First When destroying an object, unlike an instance of a class, you have to manually write code to

destroy objects, strings, dynamic arrays that are fields of this object. It's not very convenient, but

saving code is more expensive than having to do some manual work.

Secondly The construction of such objects looked very unusual. In order not to get confused in

the future, writing something like new (List, Create); , I decided to make all the "constructors" of

objects global functions of the form NewTypename (parameters): PTypename. (Just in case, I

also made "constructors" inside the TControl object to create various kinds of visual objects, but

apparently no one uses them, including myself).

Thirdly Unfortunately, thirdly, that is, about compatibility, I learned much later: in another Pascal

compiler, Free Pascal, the word object was not initially supported. But there were people who,

for the sake of being able to compile KOL programs in this popular, and what is important - free

- compiler, forced, persuaded - I don’t know exactly how to say, finally did some work

themselves, and from version 2.10 Free Pascal began to fully support object. Although it is a bit

late, and by this time a solution had already been found: in the automatic conversion of KOL to

classes, and KOL programs compiled perfectly in Free Pascal, even without the support of

primitive objects in it.

Another side of this incompatibility is that there are some problems when viewing the

values of object properties in the Watch List when performing step-by-step debugging.

Delphi can show anything as the property value instead of the true value. The solution to

this problem is to specify the internal name of the field instead of a property when possible

(fCount instead of Count, for example).

There are still a number of differences in the use of objects versus classes: namely, since object is

just a structure in memory, in order to organize a pointer to some object, it is necessary for each

object type to provide a corresponding pointer type. (This is not required for classes, since the

type of the class is already equivalent to the type of the pointer, i.e. the type of the class

representative is the same as the type of the class itself). For the same reason, in object

21

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Introduction
KOL Start

methods, unlike class methods, the Self variable is not a pointer, but the structure of the object's

fields, and to get a pointer, you need to use the operation of taking the @ address, writing @

Self wherever you need to pass or use a pointer the object itself for which this method is written.

(In the implementation, this operation does not require additional code, since Self is passed to

the method by reference,

So, I have become firmly established in the decision not to use classes (classes), but only objects

(objects). My further research and experiments showed that, firstly, too many different object

types, and any too branched tree of the inheritance hierarchy are unacceptable if you need to

save code size. And secondly, splitting the code into modules also increases the size of the

program. Although, in the second case - and not a lot, but saving means saving, and I decided to

cram the entire library into one large source file, which was named so: KOL.pas. *

With the problem of reducing the tree of the inheritance hierarchy, I decided to fight the most

radical means, namely: all visual objects are represented by the same TControl object type,

directly derived from the TObj object type, which I created as the base type for my hierarchy.

The constructors are used differently, the sets of methods sometimes overlap, sometimes quite

dramatically differ from one kind of visual object to another, but in any case, the same object

type is used. As a result, they all use the same copy of the virtual method table (vmt), less code

duplication, and less virtual methods are required.

And I also used one very important technical trick that I invented while building XCL (at least for

something my first library came in handy, although no, of course, without XCL and KOL there

would not have been). Namely, when initializing objects, in no case should you initialize all

possible fields (which, in turn, are objects). This operation should be postponed "for later" if

possible. For example, when creating a visual object in KOL, the font for the window of this

object is initialized to the smallest possible amount. That is, the font is "inherited" from the

parent window object, while, in fact, a stub is called - a pointer to a function, which begins to

point to a valid function only if at least one font parameter has been modified in the program.

Of course, the likelihood that in his application the programmer will change the default font, in

the usual case is great. But the case when a programmer uses KOL is unusual in itself: he says

that the programmer does not want to add extra code to the program. And this means that the

decision to initialize the fields should be postponed until the moment when such code is

required in the application. Naturally, if there is such an opportunity.

In fact, the above technique would not have been possible without using a compiler that has the

ability not to insert procedures and functions into the program code that are not referenced in

the project (even if these procedures and functions are present in connected modules, involved

classes / objects - if only they weren't virtual). This is exactly the ability Delphi has (Free Pascal

too, but at the moment when I started KOL, there was no question of compatibility with Free

Pascal, and there was no such compiler then - if I'm not mistaken). In Delphi, this ability is called

smart-linking.

Unfortunately, this trick, as mentioned, does not work for virtual methods. As far as I understand

this problem (and Delphi experts offered their understanding, and it sometimes differed), the

reason is banally simple: since the reference to all virtual methods is already present in the vmt

22

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Introduction
KOL Start

table of virtual methods of the class / object type, the method is counted as used, even if in

reality, it is never addressed. For example, if another class "B" is inherited from class "A", in

which this method is completely overridden, and there is no call to this method of the ancestor

"A", and only instances of this inherited class "B" are created in the project modules. Anyway,

since the link is already in the vmt table, the method will be "credited". So I decided to use the

virtual method mechanism with great care.

2.1.2 Further development of KOL.

Further development of KOL. We reduce everything we can. Replacing

System.pas and other system modules

And he is no longer what he was in the beginning.

Other people's destinies, becoming his destiny,

They take him away ...

(Rilke)

Already at the initial stage of writing the library, I had the idea to cut the System.pas module as

much as possible. If someone is not in the know, then this unit is, as it were, automatically added

to the uses section of any unit, and it contains a set of functions that are needed practically (in

fact, theoretically) always. And in particular, it contains the code that is responsible for handling

exceptions, for allocating memory in the heap - the so-called Memory Manager - Memory

Manager, functions for working with variants, with dynamic arrays, dynamic strings, etc.

Having obtained all possible information on the bottom of the barrel, I discovered that it is quite

possible to write and "substitute" my own system module compiled with the help of the Delphi

compiler itself. So I did this by doing this work for Delphi 5, the version I was using then (in fact, I

still mainly use Delphi 5 when creating projects on KOL, with rare exceptions - when I need, for

example, to use in assembler inserts MMX commands).

When creating my own version of system.pas, if possible, I didn't just "disable" and replace the

standard methods with my own, but made them optional. These features are turned off by

default, but there is always the option to turn them back on. For example, the standard memory

manager is enabled by calling the UseDelphiMemoryManager procedure, the ability to work

with console I / O is enabled by calling UseInputOutput, etc. Including a standard memory

manager instead of my primitive adapter (wrapper) to Windows API functions (GlobalAlloc,

GlobalFree, GlobalRealloc), which takes literally tens of bytes of code instead of several

kilobytes, usually there is no need - unless the program requires constant work with allocating

and reallocating memory in heap, for example, when dealing with dynamic ANSI strings.

Now, in almost any KOL project, it is enough to add a directory in the project options in the

search path, which contains the compiled alternative modules system.dcu and others like it, and

the program is immediately reduced by 9-11 Kilobytes. For a gigantic size of 300-400 Kilobytes

of a typical application made in Delphi, this would not be too much of an effect, but for a KOL

program with a size of up to 40-60 Kilobytes, this is already a very significant gain. (Later, various

authors made adaptations of my rework of System.pas for other Delphi versions: 3, 4, 6, 7).

23

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Introduction
KOL Start

Note: to replace system modules, it is not necessary to actually replace those modules in

the system libraries. Moreover, this way you will not replace anything. The supplied

replacement files should be unpacked into a separate directory, and in the project options

specify the path to this directory - this is the replacement.

Note: to replace system modules, it is not necessary to actually replace those modules in the

system libraries. Moreover, this way you will not replace anything. The supplied replacement

files should be unpacked into a separate directory, and in the project options specify the path to

this directory - this is the replacement.

Already doing this job of shortening system modules, I came across writing code in inline

assembly. The PC assembler was not a particular problem for me, although before that I had

never had to deal with it. I had to fill in some gaps in my education, and after gaining some

experience in translating Pascal code into assembler, I decided to make an alternative asm

version of the code for almost all KOL functions, which could be reduced at least a little by this.

As a result of both improvements made - replacement of system modules, and translation of

most of the code into assembler, the size of the minimum KOL project with one visual form

stopped at 13.5 Kilobytes, and the minimum console application of the form

Program P1; {$ APPTYPE CONSOLE}
begin
end.

decreased to 6 kilobytes (if you insert a call to ShowMessage with the parameter 'Hello, world!

"- a standard test for the size of the generated code - then the size of such a program turns out

to be 6.5K).

Correction: since version 2.39, the size of the minimal KOL application with one form has been

reduced to 12.5K, the minimum DLL using KOL - to 6K, the minimal console application using

KOL - to 5.5K. The compilation was done in Delphi6. In recent versions, an application with an

empty form takes only 11.5K.

In addition, ahead of the events, the Collapse project was recently completed, which reduces the

code by about half, even compared to rewriting it into assembler, (although the effect becomes

noticeable only for fairly large applications - from approximately 40 Kilobytes). Collapse uses the

translation of a part of the Pascal code into the P-code of a virtual Collapse machine, which is

emulated during program execution. For this, the P-code is converted into byte-code using a

specially created P-compiler. To complete this fantastic project, it remains only to write your own

Pascal compiler, which could turn almost any Pascal code into P-code.

24

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Introduction
First conclusions

2.2 First conclusions

First conclusions. The need to minify code: Who needs it?

The topic of writing minimal (in size) applications in Delphi is widely covered. Any beginner can

easily find information on how to make their application small. Almost any source claims to ditch

the VCL and write in a pure API (Application Programming Interface). The ability to use other

libraries instead of VCL - ACL and KOL - is quite often mentioned. I am a convinced supporter of

the fact that you do not need to write in a pure API, except for those cases when it is simply

impossible to do the work differently.

Let me explain why. API functions are generally quite general, and the number and types of

parameters that are used in API functions are prone to bugs. (For example, instead of an integer,

in some cases, a pointer to a string of the PChar type may be passed in the same place). The

code using a direct call to these functions looks cumbersome, inconvenient to read and modify.

And, for example, drawing on the so-called DC (Device Context) by directly referring to the GDI

(Graphic Device Interface) methods is a more than non-trivial art. It is still better in many cases to

use encapsulations in objects or classes, even if they are simpler than VCL.

However, I am not forcing anyone to use the Key Objects Library. But experience shows that

creating and maintaining applications on KOL is not at all more difficult than on VCL (you just

need some practice, as well as to get started on VCL). At the same time, the size of KOL

programs is quite comparable to what is possible to get by hand through the API.

Now to the question of why you should minify your application code at all. Why - everyone

decides for himself. Or he wants to save his traffic and user traffic when uploading his application

to the Internet. Or he writes ActiveX - an application that is loaded from the server to the client

side (and it is desirable to reduce the load time as well). Or he is writing a CGI application and

wants to offload the server, which will have to execute hundreds and thousands of such CGI

applications per second. Of course, a large program with a size of 400 KB can also be

considered a CGI application, but it will probably take several times more resources and time for

the system to launch. Yes, virus and Trojan writers are another category of "programmers" (so to

speak) who need to write small programs.

Recently, the "fashion" for creating applications as large as possible (as proof of their coolness) is

fading away. Despite the fact that the majority of Internet users are no longer limited by the

speed of Internet access (and these speeds only grow over time), many of them are beginning

to understand that the size of an application has practically nothing to do with its capabilities,

quality of performance, or ease of use. And it only speaks about the qualifications of a

programmer (and here the relationship is just the opposite: a seasoned programmer, as a rule,

will have much less code than a beginner).

25

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Introduction
First conclusions

2.2.1 Save memory costs

He's shriveled!

(parody of David Blaine)

(This paragraph was added on 10.2010 in conjunction with KOL / MCK release 3.00).

KOL was originally aimed only at saving code, not system resources such as memory. Starting

from version 3.00, the code has been reworked so that the size of TControl object instances has

been reduced by about 6 times. First of all, due to the fact that the fields used by various types

of controls do not overlap, and they were combined using a structure with variable content

(record CASE). In addition, more than 600 bytes occupied by method pointers for processing

messages began to be created dynamically only for those controls for which message handlers

were assigned (and this is often far from all controls, for example, many panels and labels, and

input fields are completely dispensed with message handlers). Same, how the dynamic structure

TCommandActions began to be created and used (about 80 bytes) - now the application

allocates one such object for a separate kind of control, instead of storing this record inside the

fields of each TControl instance. In addition, about 40 bytes of flags, which previously occupied

one byte for each Boolean flag, were compressed into several bytes, with one bit being spent on

the flag.

As a result, the memory consumption for the TControl instance has been reduced from more

than 1.5 KB to 300-350 bytes, excluding the optional event block (depending on the set of

compilation options used). It is assumed that such an approach, in the case of adapting

innovations in the version intended for Windows CE (KOL-CE branch), will help create

applications that are less demanding on RAM. But for the main branch of the KOL project, saving

memory can also be useful.

2.3 Mirror Classes Kit

Development of GUI applications in KOL: Mirror Classes Kit

If the mountain does not go to Mohammed,

then Mohammed will come to the mountain.

(Arabic proverb)

It is impossible not to dwell on a very important topic indicated in the title of this chapter. Delphi

programmers, sitting in the IDE, have long been accustomed to the fact that a project using the

VCL library (and now CLX - "kylix") is very convenient to develop visually, i.e. by sketching

components on the form and visually setting their properties in the Object Inspector.

Of course, in the first versions, KOL was not visual (the library was conceived as not visual). But at

some point the X hour came, and under the influence of numerous demands from KOL users, I

was forced to develop a set of visual ("mirror") classes - Mirror Classes Kit - it is called that. What

it is. It is a set of Design Time classes that are only used to determine which KOL objects are used

in a module at run-time.

32

26

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Introduction
Mirror Classes Kit

These mirror classes themselves are not involved in the program at runtime, and do not even

exist, but at the development stage they are engaged in generating code for initializing forms,

initializing and launching the application. And that's all. Those. MCK works like an add-on or

plug-in to the Delphi IDE, modifying project files so that when they are processed into machine

code, the Delphi compiler "does not see" mirror classes, links to .dfm form resources, but

compiles only the code generated by MCK mirrors in the process of setting them up by the

programmer.

In fact, application development in MCK - unlike "pure KOL" (this term appeared, apparently, by

analogy with VCL - against "pure API") in no way increases the size of the application, just

simplifying the developer's work (so the analogy - very distant).

In addition to what has already been said, I note that MCK projects, unlike handwritten KOL

projects, automatically support Collapse and FormCompact technologies. The Collapse

technique is that when the Pcode conditional compilation symbol is included in the project

options, the mirror classes automatically generate the P-code for the Collapse machine, and thus

it is possible to somewhat reduce the code of any large KOL applications using MCK. The

FormCompact technique is even simpler: just enable the FormCompact property in the Object

Inspector, and the generated pseudo-code for creating the form starts being processed by the

interpreter of this pseudo-code, automatically. Reducing the code, however, will be noticeable

(in both cases) only for the case of a sufficiently large number of controls on the form.

2.4 Search for information...

You can't get a fish out of the pond without difficulty.

(Russian folk proverb)

Now let's discuss a topic that is very important for any developer using any development

environment, any programming language, any library, any API. Namely, where to get

information (where to get help on KOL, preferably in Russian - this is one of the most frequently

asked questions). People are primarily interested in information about the list of available

functions, object types, methods.

Let's agree right away: KOL.pas is the main source of information. The functions and object types

themselves in the interface part are already information. In addition, they are almost always

provided with comments (the comment is placed after the declarations, in brackets like {* ...} -

this is done for the purposes of the help autogenerator, which I will talk about right now.

Secondly, if someone finds it more convenient, you can use the automatic help generator - the

xHelpGen utility. All that is required for its operation is to place it in the directory with the

KOL.pas file and other library modules (and there are some, since the entire KOL has long

ceased to fit into one module), and run. The result will be a set of html files that can be viewed

using your favorite browser. (The xHelpGen utility first appeared for XCL, and was later rewritten

27

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Introduction
Search for information...

in KOL). There are other KOL help files (recently there is a help in chm format, it takes up several

megabytes).

Third, on the main KOL site http://f0460945.xsph.ru/ and on other sites (links to which can be

found on this resource) there is a sea of information: articles, FAQ (FAQ, ie Frequently Asked

Questions and Answers), demo projects. Including there is a fairly large number of applications,

many of which are provided by the authors along with the source code. Those. there is where to

learn, it's up to little: you just need to find the time and start learning. (Of course, if you really

need it, no one is coercing).

Fourth, if you really have a question that turned out to be too tough for you, I recommend

going to the github kol-mck page: https://github.com/ebta/kol-mck... There will always be

people who can competently answer really serious questions (including if the question is asked

in English). This, however, should not be taken as an invitation to immediately contact the forum

with the question "how to install KOL". No one will like to explain to someone else the already

detailed chewed and stated in the documentation.

And a little more about distributions. The KOL / MCK package and update to the latest version

can be obtained from the main site, the address is given above. To perform the update, you

must use the Updater utility (take in the same place). Since the KOL.zip and MCK.zip archives are

quite weighty, I upload only every 10th version in its entirety, all intermediate ones are obtained

using small update files. If someone has a wide enough channel, then it is possible to pick up the

latest distribution from other sources - the addresses are indicated in the links in the Download

section (Archives).

2.5 Compatibility with VLC projects

Compatibility and conversion issues for existing VCL projects

Due to the fact that the original syntax used in KOL projects is forced to follow the restrictions of

objects, unlike classes, I did not worry too much about other syntax compatibility. For example,

objects do not support for properties of the default modifier, i.e. in an object type representing

a list, for example, you cannot set the Items property as the default and write just as easily for a

TList in the VCL: MyList [i]. You always have to write MyList.Items [i].

With function names similar to those found in the standard SysUtils module, I also took the

liberty of deviating from the standards. Using this module in a KOL project increases the size of

the application by about 10-20 KB, so it's better not to use it. Most of the SysUtils function

counterparts are in KOL itself, and you can use alternative modules that are more compatible in

function names. In particular, I decided to call the functions a little differently also in order to

keep the possibility of simultaneous access to functions from both KOL and SysUtils. (Of course,

you could always use modifiers like SysUtils.IntToStr, but what's done is done, and shouldn't be

changed now).

http://f0460945.xsph.ru/
https://github.com/ebta/kol-mck

28

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Introduction
Compatibility with VLC projects

As for more complex objects, such as lists, trees, and others, in KOL you can often find analogs

that provide no less, if not more, capabilities than the standard set of VCL classes. Moreover, I

now prefer to do almost all the work in KOL just because for KOL, thanks to the dedicated work

of many programmers, a huge variety of various components of a very different direction have

been adapted, and they turn out to be more accessible than similar tools for VCL. At the very

least, they are already easier to find than similar VCL solutions: they are centered on a few KOL

sites, built in almost the same style as defined by the tighter KOL framework, easier to customize

to work with, and easier to integrate into your KOL project. (And they are free and with source,

which can be important too).

But there is no need to talk about full compatibility with VCL components from the very

beginning. You may find that a similar property is called differently, and is, for example, not a

property, but a function, or quite the opposite. In the case when in VCL to create your own

thread class (for example) you had to create your own class inheriting from TThread and

override the Execute method, in KOL it is enough to call the constructor of the PThread object in

the project and assign the OnExecute event to it.

There are a lot of such incompatibilities. And this is not at all because I specifically wanted the

KOL library to be incompatible with the VCL. I just wanted to keep the projects developed in

KOL as small as possible. Therefore, there is no Run-time Type Information (RTTI) that Delphi is

so proud of, and there are no components that load themselves from a thread, and therefore

the syntactic differences are great. But the language remained the same - Pascal. And the

compiler is the same, with all its advantages and disadvantages.

But KOL itself is just very well compatible (if you can say so at all), in terms of transferring

projects from any version of Delphi to any other. Almost everything that works in KOL for Delphi

5 or Delphi 7 is also available for Delphi 3 and even Delphi 2. There are a few exceptions, for

example, Delphi 2 and Delphi 3 do not support Unicode WideStrings to ensure compatibility to

work with doubled integers, it is necessary to use functions specially made for this in the project.

Throughout the entire time that the KOL library was created and developed, many "converts"

asked me a question about how they can turn a ready-made VCL project into a KOL-compatible

one. Despite the fact that there are already several projects that convert a VCL application or

VCL component to an analog for KOL, I recommend doing this work manually anyway. There are

not many differences, in fact, between KOL and VCL, but they are quite varied, and it is better to

control the modification process personally than to trust the machine. (No, I do not insist, you

can always try, the attempt is not torture, especially since if it works out at least partially, then

manual work after that can be reduced, and this is also a plus).

2.6 KOL and the CBuilder compiler

Sometimes programmers using the CBuilder environment for development ask the following

question: is it possible to use KOL from CBuilder. There are no fundamental obstacles to this. The

CBuilder compiler understands Delphi code. And although he refuses to work with objects in the

old style of object Pascal, and only agrees on classes, this is also not a problem: for KOL you can

29

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Introduction
KOL and the CBuilder compiler

always make a version with classes, just run the corresponding batch file from the GlueCut

package. (Only on the batch file it would be necessary to work, because the incompatibilities

between the syntax perceived by CBuilder and what is obtained even in KOL with classes are

much greater even than when switching to the old version of the Free Pascal compiler).

In fact, it is not this that confuses, but the large size of the runtime library. If you do not connect

it, and make an application that can be transferred to any machine, then a minimal application

like "Hello, World!" It already takes up 50KB, not 16, as in Delphi.

If you leave the compilation option with the use of these libraries enabled, then without the

presence of such a library of about 1.5 megabytes in the system, the application will not be able

to run. But the good thing about the KOL library is that applications built on the principle of "I

carry everything with me" remain extremely small, and at the same time programming remains

object-oriented.

And it is worth adding KOL.pas to the project, and the starting size of the application is like

"Hello World!" immediately grows to 360KB, and this is with the debug information disabled. If

you look at the .map file created by the linker, you will find a very large number of functions

from KOL.pas, although none of them have been called yet. Either CBuilder does not support

smart-linking, or it does not support it only for pluggable source code in Pascal, but the bottom

line is the same: the whole point of using KOL in the CBuilder environment is lost.

Installing KOL and MCK

Installation instructions for KOL and MCK

32

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Installing KOL and MCK

3 Installing KOL and MCK

· Installing KOL

· Installing MCK

· Conditional Compilation Symbols

You can download KOL + MCK from this link: https://www.artwerp.be/kol/kol-

mck-master_3.23.zip. Everything you need to get started with KOL / MCK can be

found in this archive.

3.1 Installing KOL

Installing the KOL library is as follows. First you need to create an empty folder. For example, let

it be "C: \ KOL". And then unpack the contents of the KOL.zip archive into it. No other action is

required. KOL is not a set of components for working in VCL, but a set of units that are included

in a project by writing a reference to the unit used in the uses section of your unit or project. You

just need to remember to write the path to the directory where the module is located in the

project options (Project | Options | Directories / Conditionals | Search paths ...) or in the

development environment options (Tools | Environment options ... | Library | Library paths).

3.2 Installing MCK

To install MCK, you need to unpack the contents of the MCK.zip archive (preferably into the

same directory, answering “YES” to all questions about file replacement - some files in these

archives are duplicated). Then you need to open the MirrorKOLPackageXX.dpk package from

the Delphi IDE, while XX must correspond to the Delphi version (D3 for Delphi3, D4 for Delphi 4,

D6 for Delphi6, D7 for Delphi7, and only for the Delphi5 version the extension is empty, i.e. the

package carries name MirrodKOLPackage.dpk).

For Delphi, Borland Developer Studio, Turbo-Delphi versions, for which there is no package, but

work with packages is supported, you can create an MCK package yourself. Three files should be

added to the package: mirror.pas, mckObjs.pas, and mckCtrls.pas.

Then you need to click the Install button - on the toolbar of the package. If there is no ruler, the

command is selected from the menu (in BDS, from the context menu on the project node). If

you have problems with the installation, perhaps follow in the package options, or better - in

Tools | Environment Options | Library | Library Path, add the path to $ (DELPHI) \ Source \

Toolsapi. This completes the MCK installation (during the first installation, you should see a very

large list of installed components, all of them are installed in the KOL tab on the component bar).

32

32

37

https://www.artwerp.be/kol/kol-mck-master_3.23.zip
https://www.artwerp.be/kol/kol-mck-master_3.23.zip

33

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Installing KOL and MCK
Installing MCK

Only in the Delphi2 version there is no need to open the package for installation, but a slightly

different procedure is required (see the installation instructions, I do not intend to replace or

duplicate it here).

Please note that when updating KOL and MCK to a new version (and this has to be done

sometimes quite often, since the library is constantly evolving), you also need to open the MCK

package, and perform Build (rebuilding) the package, but in no way the case is not Compile

(recompilation). The fact is that when recompiling, unlike Build, the Delphi compiler erroneously

uses the version of the pre-compiled KOL file that remains after working with current projects,

and does not take into account the presence of significantly different compilation options in the

package. As a result, after such an incomplete recompilation, the Delphi shell begins to

malfunction, even to a permanent crash.

And note that when you go from working with a package back to working with applications, then

at least the first time you should build again (Build), not compile (Compile) for the application.

Otherwise, the compiler will again not notice that the conditional compilation character set has

changed, and will try to use the KOL.dcu file generated when building the MCK package. And

since in this case there were indirect references to VCL modules of design time, then Delphi will

certainly require it to find the proxies.dcu file (which simply does not exist).

3.3 KOL64 and Free Pascal

Thanks to the FreePascal (FPC) compatible version of KOL, 64-bit programs can also be created

with KOL.

You can download this version of KOL here: https://www.artwerp.be/kol/kolx64.zip

You can compile 32 bit and 64 bit programs with FreePascal and this version of KOL.

If you like to do this from your familiar Delphi environment, you can use CrossFPC. This

program integrates the FreePascal compiler into Delphi. This works perfectly in Delphi 7, for

example.

Here are the instructions for installation in Delphi 7:

· Download and install CrossFPC at this link:

https://www.artwerp.be/kol/crossfpc_setup.exe

· After installation of CrossFPC, start Delphi 7.

https://www.freepascal.org/
https://www.artwerp.be/kol/kolx64.zip
https://www.freepascal.org/
http://www.crossfpc.com/
http://www.crossfpc.com/
https://www.artwerp.be/kol/crossfpc_setup.exe
http://www.crossfpc.com/

34

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Installing KOL and MCK
KOL64 and Free Pascal

· Open the Tools menu and select CrossFPC Options...

35

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Installing KOL and MCK
KOL64 and Free Pascal

· This dialog box opens:

· If you wish to compile 64 bit programs with CrossFPC as well, you must write in the

Additional compiler switches field: -Mdelphi -Rintel -CX -XX -Xs -Os

http://www.crossfpc.com/

36

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Installing KOL and MCK
KOL64 and Free Pascal

· Now, you can select Win64 as CrossFPC Target, as in the picture below in the Delphi Project

menu:

From now on, you can compile programs in Delphi KOL with:

· The Delphi native compiler

· FreePascal 32 bit

· FreePascal 64 bit

Important: Currently, KOL is not compatible with Linux by default. Therefore, these options

cannot be used...

Carl Peeraer's Piano Chords Maker program is an example of a 64 bit program, written with

KOL / MCK, compiled in Delphi 7, with CrossFPC.

https://www.artwerp.be/akkoorden/index.htm
http://www.crossfpc.com/

37

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Installing KOL and MCK
Conditional Compilation Symbols

3.4 Conditional Compilation Symbols

Since the KOL library is designed for a very wide range of tasks, it is almost impossible to satisfy

all requirements using the same code, while keeping its size small. The way out is to allow the

programmer to choose the code variants that he needs in his specific task. This is what the

conditional compilation symbols are for.

To change the set of symbols or options that control conditional compilation, open the project

properties dialog (Project | Options) and on the Directories / Conditionals tab correct the

Conditional defines line by listing the required symbols separated by semicolons. An alternative

is to add {$ DEFINE option} declarations to the project file (DPR) for each option you want to use

for the entire project. They say it works - I have not tested it.

In MCK projects, the symbol KOL_MCK must always be present here, which "hides" the VCL code

of the project from the Delphi compiler at the time of compilation. Some options may not apply

to KOL, but to third-party modules. For example, some component packages for KOL are dual,

that is, they can work with VCL and KOL. In this case, a conditional compilation symbol is often

required to include a version of the code adapted for KOL (usually this symbol is the string 'KOL'

- without quotes, but you still need to read the component description before using it in

practice).

The list of options that can control sections of the code of the KOL library itself is located near

the beginning of the KOL.pas file, with a brief description of the purpose of each symbol. Here I

will try to give a detailed overview of these symbols, but it is almost impossible to describe

everything without going into details. Therefore, further in the text, these symbols are

mentioned more specifically in the context of each specialized function or object to which these

symbols can be applied.

In most cases, adding one of the following characters to the project options list will result in

some form of increment in the application code. In the opposite cases, I record this separately.

PAS_VERSION symbol (disable assembly code). Including this option in a project will

significantly increase the size of the code, and make it somewhat slower. But there is a chance

that the application will be more resilient. Basically, this symbol is intended for testing purposes

and for identifying "bugs" in the assembler version. The Pascal code is largely self-documenting,

and is actually kept in KOL, including as a commentary to the assembler version.

However, using the PAS_VERSION symbol is not a panacea. In the history of the development

of the library, it often happened that the error lurked precisely in the Pascal version of the

"guilty" procedure, while the assembler version was more correct.

The PARANOIA symbol is intended, on the other hand, to deepen the optimization of the

assembler code - when using older Delphi compilers, version 5 and below. (Of course, this

symbol only works if the project uses the assembler version of the library code). In these

versions, the compiler used double-byte versions of some machine instructions, regardless of

38

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Installing KOL and MCK
Conditional Compilation Symbols

the fact that there is a single-byte version for them, which is no different in functionality.

Beginning with Delphi 6, Borland has removed this compiler flaw and is no er needed.

The SMALLEST_CODE symbol is designed to turn off everything you can do without by default.

The form in this case will look very Spartan, since this also disables support for processing

WM_CTLCOLORXXXX messages, which are responsible for coloring visual elements according to

the developer's preferences, and the system fonts are used by default. (In this case, the color is

provided by the system itself, its palette is not rich, but if functionality interests you more, then

why not give the artist's functions to the system). Some checks are disabled in the code (for

example: in the Int2Hex function it is no longer checked that the second parameter is> 15).

In fact, quite a lot of code fragments, mostly small ones, are disabled, and the savings in the

code as a whole are very small. But it does take place, so I decided that the symbol should be.

The SMALLEST_CODE_PARENTFONT symbol, when using the above SMALLEST_CODE,

nevertheless ensures that child visual objects inherit the font from their parents at the time of

creation. If you install a different font for the parent than the system default for windows, then at

least you don't have to repeat this operation for all its children. Thus, this option partially

overrides the previous one, but only in this particular application to font inheritance.

The SMALLER_CODE symbol does almost the same thing as SMALLEST_CODE, but to a lesser

extent, affecting the appearance and behavior of controls as little as possible.

The SPEED_FASTER symbol, included by default, increases the performance of some of the

functions and algorithms used, at the expense of additional code. For example, the SortArray

function is used to sort lists and strings, which increases the speed compared to using the more

versatile SortData function by about 5-10% (in assembler version). To compare Ansi strings, the

preliminary construction of an ordered set of Ansi-symbols is used, with the refusal of the

subsequent call of API functions, after which the speed of comparison operations of the

AnsiStrCompare and AnsiStrCompareNoCase functions increases several times. At the same

time, this reduces the sorting of the list of strings StrList by several times (AnsiSort method). If

improved performance is not required for these operations, this option can be disabled by

adding the conditional compilation symbol SPEED_NORMAL.

The TLIST_FAST symbol changes the internal representation of lists. In the Delphi VCL, lists are

actually arrays. When developing KOL, this approach was also initially taken as a basis, since

provides high performance for small lists, and does not require a lot of code. With the

TLIST_FAST option, the algorithms for working with lists and their internal representation are

changed in such a way as to provide greater speed when inserting and deleting elements at

arbitrary positions in the list. Namely, the elements are no longer stored as a solid array, but as a

list of blocks with a maximum of 256 elements per block. This approach can, if used incorrectly,

not only fail to increase performance, but, conversely, reduce it. For example, the operation of

random access to the elements of the list at arbitrary indices can be relatively slow compared to

the standard approach. To provide an opportunity for individual lists to keep the usual algorithm

of operation, the list has the propertyUseBlockswhich can be installed in FALSEfor these lists. In

addition, adding the DFLT_TLIST_NOUSE_BLOCKS option allows you to disable the TLIST_FAST

option for default lists, and then assignUseBlocks TRUE for a select set of lists only.

39

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Installing KOL and MCK
Conditional Compilation Symbols

The USE_NAMES symbol was added at the request of numerous programmers who are used to

the fact that in the VCL every component has a Name property. Including this code adds this

property to all objects starting with TObj. This makes it possible to search for components by

name using the form's FindObj method. This option can also be useful for step-by-step

debugging in order to make it easier to navigate in the context of code execution when

stopping at an arbitrary point. MCK automatically generates the assignment of the component

name to the visual and non-visual objects of the form, "hidden" in the parentheses of the

conditional compilation {$ IFDEF USE_NAMES}. So, in the case of MCK projects, no additional

effort is required to naming the components: it is enough to include this option in the project.

The USE_CONSTRUCTORS symbol was originally intended to use Delphi constructors for initial

object initialization instead of using NewXXXXX's own constructing functions. Since there are no

requirements from users to maintain this mechanism, support for the correctness of the code

generated if this option is enabled is not guaranteed. In short: it is better not to use this option.

The USE_CUSTOMEXTENSIONS symbol is intended for those programmers who want to

include their own additions in the KOL library, namely in the KOL.pas module itself, and precisely

in the code of the TControl object. Position the cursor over this symbol, and press Ctrl + F in

order to find all uses of this symbol in the KOL.pas module. You will find that it is used three

times. 1) To add arbitrary code from the CUSTOM_TCONTROL_EXTENSION.inc file to the

TControl object definition, 2) add some declarations to the interface section from the

CUSTOM_KOL_EXTENSION.inc file, and 3) place some code into the implementation section

from the CUSTOM_CODE_EXTENSION file. inc. You can prepare these files yourself and place

them in the project folder. This method is good for extending the functionality of KOL without

making changes to the code of the library itself, or at the stage of testing additions,

UNICODE_CTRLS symbol is intended for converting visual objects of TControl into windows that

work directly in Unicode encoding. This work has been completed almost completely (although

some problems are periodically found, but they are eliminated). It is enough to include this

option in the project, and the application will almost completely support UNICODE encodings.

All calls to API functions are redirected to UNICODE versions of these functions (with the ending

W). Controls like TREEVIEW and LISTVIEW start working with UNICODE versions of window

messages. Etc.

The USE_MHTOOLTIP symbol allows you to include in the library (and use in the project)

tooltips implemented by Dmitry Zharov aka Gandalf. At a minimum, you will need to download

the appropriate package and “install” it before adding this option to the project. After that, by

assigning the Hint and ShowHint properties to regulate the use of tooltips on controls.

The USE_OnIdle symbol includes a call to the ProcessIdle procedure in the message loops,

which, if there is any downtime, calls the OnIdle handler that you assigned (by the

RegisterIdleHandler procedure).

40

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Installing KOL and MCK
Conditional Compilation Symbols

The ENUM_DYN_HANDLERS_AFTER_RUN symbol quite dramatically changes the behavior of

the message manager at the end of an application. By default, as soon as the AppletTerminated

variable is true, dynamically attached message handlers are no longer invoked from that point

on. This is done mainly in order to prevent unnecessary code activity at the time of the

application termination. In some cases, for example, the activation of timers that are still not

turned off, or some other handlers that respond to changes in the states of window elements

(and at the moment of termination of the work, the state of windows begins to actively change,

otherwise it cannot be), they could try to address objects that do not exist, or try to get handles

of already destroyed windows. All this led to some glitches. To avoid such failures,

If you want your event handlers to continue working until all processes are complete, then add

this option to the project, and make sure that your event handlers behave correctly when the

application is closed. By the way, enabling this option does not just increase the code, but even

slightly reduces it (checking the value of the AppletTerminated variable is disabled).

There are a number of conditional compilation symbols to control the

appearance and behavior of buttons, regular (button) and "drawn" (bitbtn).

The BUTTON_DBLCLICK_AS_CLICK symbol for all buttons (buttons) of the application changes

the functionality in such a way that the event of a double click with the mouse (left key) is no

longer recognized as a double click, but in reality leads to two clicks on the button.

The ALL_BUTTONS_RESPOND_TO_ENTER symbol provides all kinds of buttons (button and

bitbtn) with the ability to respond to the Enter key. The fact is that by default in Windows,

buttons respond only to pressing the "space" key, and this is not my invention, this is how the

window message handlers of the operating system work. In order for the buttons to be pressed

with the Enter key, it is required to add some insignificant code. As KOL strives for leaner

application code, this functionality has been made optional. If you want to get it in your

application, add this option to your project.

The ESC_CLOSE_DIALOGS character adds a response to the Escape key for all dialog forms,

ensuring that they are closed.

The CLICK_DEFAULT_CANCEL_BTN_DIRECTLY symbol changes the functionality of the default

buttons (DefaultBtn property) and cancel buttons (CancelBtn property), namely, pressing these

buttons from the keyboard becomes "non-visual". By default, when this symbol is not included

in the project options, pressing the corresponding buttons on the keyboard results in visual

clicks of buttons on the form, and switching the focus to these buttons on the form.

The DEFAULT_CANCEL_BTN_EXCLUSIVE symbol prevents the same button from assigning the

CancelBtn and DefaultBtn properties at the same time. Adds some code that, when set to a

property, checks for an alternative and disables the opposite property.

The NO_DEFAULT_BUTTON_BOLD character disables the special visual appearance of the

default button (DefaultBtn), in which it is surrounded by a wider shadow than other buttons on

41

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Installing KOL and MCK
Conditional Compilation Symbols

the form. Disabling the special design does not increase, but even slightly reduces the code by a

couple of machine instructions.

The KEY_PREVIEW symbol provides filtering of button press messages in a form handler for

which the KeyPreview property is set (that is, you must both enable this option and set the

KeyPreview property for the form to true so that the form can always be the first to process the

keys intended for its visual objects).

The OpenSaveDialog_Extended symbol significantly expands the functionality of the standard

file open and save dialogs (TOpenSaveDialog). This option allows you to use its OSHook and

OSTemplate options in the dialog properties, and specify the template name (Template

property), for example, to add your own control elements (buttons, checkboxes, labels, etc.) to

the dialog window. In addition, using the NoPlaceBar property, it becomes possible to turn off

the "standard placements panel" on the left in the dialogs of the new standard. (This may be

needed, for example, to speed up the process of opening a dialog, for some reason this panel

may slow it down noticeably). If this symbol is not added to the project option, all these options

are unavailable (and the placement panel is always present in this case), but the code is

somewhat shorter.

The AUTO_CONTEXT_HELP symbol provides an automatic response to the

WM_CONTEXTMENU message. If the target visual object (TControl) has a nonzero value of the

HelpContext property, the application's help system is called for it, passing this context to it. Of

course, you must take care of the formation of the help system in the form of a file with the HLP

or CHM extension.

The NOT_FIX_CURINDEX symbol is for backward compatibility with older KOL projects. In the

initial versions of KOL, there was a bug related to visual objects oriented to work with elements

(listbox, combobox). This error led to a shift in the value of the CurIndex property in the process

of programmatically assigning values to the overlying items (Items), since the assignment is

performed by deleting the item and inserting a new value into its position. In the absence of this

option in the project properties, this error is now eliminated automatically, but with some

increase in the code. In case this error is irrelevant for your application working with visual lists,

or if it is fixed in the application itself, you can add this symbol.

The NOT_FIX_MODAL symbol returns the situation to the time when KOL applications “did not

know how” to activate when clicking on any of their windows at the moment when the modal

window is active. By default, KOL applications now respond correctly, activating as expected. But

this requires a little extra code. If you do not need this behavior correction for some reason, you

can cancel it with this option.

The NEW_MODAL symbol is an alternative implementation of the modality proposed by

Alexander Pravdin. The implementation of this version of the modality is a little more code-

based, and even then mainly because it is not translated into assembler. And it provides more

modality organization service for applications. For example, it becomes possible to use the

42

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Installing KOL and MCK
Conditional Compilation Symbols

ShowModalParented method, which allows you to show a model form only in relation to a

specific form, without affecting other active forms of the application.

The USE_SETMODALRESULT symbol somewhat speeds up the application when the form is

assigned a new value to the ModalResult property. By default, the value of this property will be

analyzed only when processing the next message from the message queue, but the regularity of

messages to the window is not guaranteed until nothing happens to it (for example, the mouse

does not move and is outside the window, no keys are pressed, no redrawing) required). And

the dialog, if its property is assigned a new ModalResult value programmatically, possibly after

the completion of any internal operations, may "learn" that it is time to close, with some delay

(sometimes a great delay). In the usual case, when the ModalResult change occurs as a response

to a key press by the user, there can be no problems, since the button will still have to be

pressed out, redrawing will occur, a number of window messages will appear in the queue, and

the dialog will react immediately and close quickly. If your situation differs from usual, then use

this option: it will provide, in addition to changing the property value, also forced activation of

the message reading cycle by sending an empty WM_NULL message to the queue.

The USE_MENU_CURCTL symbol allows you to analyze in the event handler that responds to

the triggering of the context menu items, which visual object was the "initiator" of the context

menu. In fact, the initiator, of course, is usually the user. It is he who presses the right mouse

button on any visual element of the form, and enabling this option only ensures that a pointer to

the object corresponding to this visual element is entered into the property of the called CurCtl

pop-up menu.

The NEW_MENU_ACCELL symbol includes alternate code for working with accelerator keys

corresponding to menu items without using the system accelerator table. This is one of the few

cases where the presence of an option gives a shorter code than its absence. (Probably, one

should even enter the opposite symbol OLD_MENU_ACCELL, and make this version of the code

the main one).

The USE_DROPDOWNCOUNT symbol allows you to change the number of dropdown items

displayed in the combo box (by the DropDownCount property). If this option is absent in the

project, the number of drop-down elements is entirely determined by the operating system.

When this option is present, the default value is set to 8 items, and the DropDownCount

property becomes available for editing, which allows you to change this value for each combo

box separately.

The NOT_UNLOAD_RICHEDITLIB symbol excludes from the KOL module the part of the

finalization code that is responsible for unloading the richedXXXX library, if one was loaded. In

fact, even if rich edit controls are used in the project, there is no special need to unload this

library, and this is done solely for pro forma. The operating system, after the application

terminates, will correctly disable all dynamic DLLs in use. The only possible purpose of using this

option in a project is to save some code size.

43

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Installing KOL and MCK
Conditional Compilation Symbols

The NOT_USE_RICHEDIT symbol excludes all references to richedit from the KOL module

altogether. You can use this option only if your project does not really use rich edit controls. The

savings when using this symbol is about 60 bytes of code.

The RICHEDIT_XPBORDER symbol adds code to make the border of a rich edit visual appear

correctly when using XP themes. With the addition of support for themes in KOL with the

GRAPHCTL_XPSTYLES symbol, this symbol is automatically included together with

GRAPHCTL_XPSTYLES, which provides a change of themes and more adequate rendering of

visual elements (as well as their transparency) in accordance with the themes of XP / Vista /

Windows7.

The USE_PROP symbol includes the old version of the code responsible for binding the window

to its object. Initially, to provide such binding, API functions GetProp and SetProp were used,

which create a named "property" for the window with the identifier 'SELF_'. Later it was decided

that for this in most cases it is more convenient and economical to use the GWL_USERDATA field

(which is obtained and set by the API functions Get / SetWindowLong). Use this option if, for

some reason, you need to use the GWL_USERDATA field, as well as if you use previously written

components that call GetProp to get the object associated with the window.

The PROVIDE_EXITCODE symbol provides the application exit code set in the WM_QUIT

message. If this option is present, to terminate the application with the required exit code,

simply executePostQuitMessage (exit_code)... If the option is missing, the exit code will always

be 0.

The INITIALFORMSIZE_FIXMENU symbol provides an initial form size equal to the form design

time set for the MCK project, regardless of whether the form has a main menu bar. In fact, this

option ensures that the overall size of the form is saved before the main menu object of the

form is created, and the form is restored to this size immediately after the menu is installed on

the form. If this is not done, the system keeps the client part of the window unchanged, and for

this it increases the total window size.

The USE_GRAPHCTLS symbol should be used if your project contains graphics visual objects

that do not have their own windows. Prior to version 2.40, it was possible to use graphic controls

without any additional character, but this option was introduced, since non-window controls are

not used too often, and completely disabling the code associated with their support saves more

than a hundred bytes in the final application.

The GRAPHCTL_XPSTYLES symbol allows both graphical (non-windowed) visuals and a number

of window controls to look almost like XP - Vista - Seven themes when using XP themes. This

requires a decent amount of code by KOL standards (visual_xp_styles.inc module), and

therefore this option should be used only if you really care about the external side of the

interface as much as functionality. See also the next option.

354

44

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Installing KOL and MCK
Conditional Compilation Symbols

The GRAPHCTL_HOTTRACK symbol aggravates the previous option, allowing graphic visuals

not only to statically look "inscribed" in the current XP theme, but also to support the visual

effects associated with mouse hovering (as you know, visuals caught under the mouse cursor are

slightly "highlighted" slightly changing its appearance). This option includes some more code to

achieve the desired effect.

The ICON_DIFF_WH symbol provides support for TIcon objects for the Width and Height

properties, allowing you to work with non-square thumbnail images (simply "icons"). Initially,

KOL only had support for square icons. The functionality to support rectangular icons requires

some additional code and is not required as often, which is why it was added as an option.

The NEW_GRADIENT symbol includes an alternative fill for the gradient bar suggested by

Alexander Karpinsky aka homm. It is faster and smaller in code. Elliptical and rhombic fill is not

supported with this option.

The NEW_ALIGN symbol enables a new (faster) way to align visuals. Currently, this option is

enabled by default, and the OLD_ALIGN symbol should be used to include the old code (in the

future, it will probably have to be dropped in order to simplify support).

The FILE_EXISTS_EX symbol affects the code of the FileExists function, checking for the existence

of the file more carefully. The normal shortcode just takes the file attributes (GetFileAttributes)

and checks that the result is received and the attribute is not a directory. In fact, DOS is not dead,

and some of the file names in the system have remained reserved for the I / O devices of this

prehistoric operating system, for example, PRN. *, CON. *. You can never create such files,

neither programmatically nor from explorer. Moreover, these files always "exist", and the

GetFileAttributes API function will return attributes that the FileExists function deems acceptable.

This option exists just to use an alternative, slightly larger code that searches for the requested

file on disk, and as a result, the correct answer was received to the request for the existence of

the file, regardless of its phantom. If your application is not going to work with completely

arbitrary files (for example, it always receives file names only as a result of executing open and

save dialogs, that is, from "trusted" sources), then you will not need this option.

The NOT_USE_AUTOFREE4CONTROLS symbol, added in version 2.40, returns the previous

behavior when child controls were destroyed in a separate loop in the parent control's

destructor. Starting with version 2.40, this functionality is assigned to the general Add2AutoFree

method, which uses the code that is always present in the KOL application. Usually, the old visual

release mechanism is unnecessary (and will probably be removed from your code).

The ENDSESSION_HALT symbol adds code that immediately terminates the process in

response to the WM_ENDSESSION message. Moreover, the completion occurs in this case in a

rather dangerous way: through a call to Halt. This means that the application will be terminated

rather abnormally, without having time to save its states and unsaved data, without performing

all the other actions required by the protocol. Conclusion: this option is not recommended for

use.

45

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Installing KOL and MCK
Conditional Compilation Symbols

The PSEUDO_THREADS symbol turns all command threads (NewThreadXXX) into pseudo-

threads. Basically, such a transformation can be used for debugging purposes - to increase

determinism and make it easier to find errors in a multithreaded application. Another potential

use of pseudo-threads is greater programmatic control over the execution priority of threads,

but you must implement this functionality yourself.

The WAIT_SLEEP symbol, when present with the PSEUDO_THREADS symbol, adds 10

milliseconds of wait to the loop of its own version of the WaitForMultipleObjects function, in this

case replacing the standard API function. The purpose of this addition is to reduce the processor

utilization indicator displayed in the task manager (without this symbol, the dispatcher shows

100% processor utilization during the entire waiting cycle, since the cycle is spinning

continuously).

And finally, about a number of options for debugging purposes. These options

can help you both find problems in your own application and find bugs in the

KOL library itself.

The FILESTREAM_POSITION symbol makes a copy of the current position in the fData.fPosition

field of the file stream object (TStream), although this is not necessary. In fact, when accessing

the Position property, the application obtains reliable information about the position in the

stream in a different way; duplicating this value in the fPosition field should be equated with a

debugging tool for step-by-step debugging. Thus, it becomes possible to find out what the read

or write position in the stream is using the variable inspectors (without this option, it is simply

impossible to find out this position when stopping at an arbitrary point until some function of the

stream working with the position is called, yes and it is rather difficult to do there).

The DEBUG_GDIOBJECTS symbol includes code that counts GDI resources (fonts, brushes,

pencils). If at the end of the work there are unreleased objects of these types, or after a call to a

procedure that should not leave trash after itself, the balance has changed, then you should

immediately start the source of the leak.

The CHK_BITBLT symbol includes code that analyzes the results of BitBlt operations (in the

TBitmap.Draw method), and in case of an error, informs the user about it. I recommend using it

only at the debugging stage, especially in cases where you have already noticed any artifacts

during drawing.

The DEBUG_ENDSESSION symbol is used in conjunction with the ENDSESSION_HALT option to

log all window messages after WM_ENDSESSION to the es_debug.txt file in the application

folder. Or, this option can be used independently, just provide your own code that sets the

EndSession_Initiated variable to true (and it is not at all necessary that this happens in response

to the WM_ENDSESSION message).

45

46

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Installing KOL and MCK
Conditional Compilation Symbols

The DEBUG_CREATEWINDOW symbol can help you debug window creation problems. If

present, the Session.log file records information about requests to create windows.

The CRASH_DEBUG symbol is very useful for finding problems with pointer memory

misreplorations. Fills the memory occupied by the object when it is freed with hexadecimal DD

bytes. If after freeing the object the application will still try to access this memory, then the

problem will be detected very quickly, since the object's data is forcibly corrupted after its

"death".

DEBUG_OBJKIND symbol adds to objects TControl field fObjKind type PChar... When creating a

control, this pointer receives one of the strings that specifies the kind of control (and, possibly,

its construction method, for example,'TControl: BitBtn'). This feature can be useful for step-by-

step debugging to understand what type of control is processing the message at the moment.

special conditional compilation symbols EXTERNAL_KOLDEFS and

EXTERNAL_DEFINES

Since the total number of conditional compilation symbols can easily exceed the size limit, after

which the Delphi compiler refuses to accept the remaining symbols, special conditional

compilation symbols EXTERNAL_KOLDEFS and EXTERNAL_DEFINES have been introduced into

KOL. If present, the PROJECT_KOL_DEFS.INC and EXTERNAL_DEFINES.INC files are included at

the beginning of KOL.pas, respectively. You provide them, and you place your conditional

compilation symbols in it as a set of preprocessor statements {$ DEFINE symbol}. Thus, the

limitation on the number of conditional compilation symbols is removed, and it becomes more

convenient to manage them than by editing project properties. Do not forget that after

changing the composition of symbols, it is better to rebuild the project using the Build command

(not Compile).

F_P must be used for FreePascal compatibility. It should be added to the list of defined project

symbols when compiled by this compiler.

Other options will be described throughout this text in the context of the various KOL

components, if required.

Programming in KOL

Programming in KOL / MCK

48

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL

4 Programming in KOL

· String Functions

· Working with long integers & Floating Point

· Working with Date and Time

· Files and Folders

· Working with the Registry

· System Functions and working with Windows

· Messageboxes

· Clipboard Operations

· Arithmetics, Geometry, Utilities

· Sorting Data

· Object Type Hierarchy

· TList Object (Generic List)

· Data Streams in KOL

· List of Strings

· List of Files and Directories

· Tracking Changes on Disk

· INI Files

· An Array of Bit Flags

· Tree in Memory

· Elements of Graphics

· Image in Memory

· Pictogram

· List of Images

· Before getting started with Visual Objects

· Common Properties and Methods - TControl

· Programming in KOL (without MCK)

· MCK Design

· Application graphic resources

· Graphics Resources and MCK's

49

59

62

67

78

81

86

88

89

91

92

100

105

115

126

130

131

135

137

141

156

170

174

183

184

279

281

287

288

49

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL

4.1 String Functions

So let's start with the basics:
The names of the functions for converting strings to numbers and vice versa in KOL, as already

mentioned, differ from the names of similar functions in SysUtils. Particle "To" in most cases is

replaced by a consonant (for English) number 2: not IntToStr, but Int2Str, for example. Here is

an incomplete list of such functions: Int2Str (i), Str2Int (i), UInt2Str (i), Int2Hex (i, n), Hex2Int

(s), Copy (s, i, n), CopyEnd (s, i), CopyTail (s, n), etc ..

Additional conversion functions:
Int2Rome (i) - "writes" a number from 1 to 8999 in Roman numerals;

Int2Ths (i) - the same as Int2Str, but the triples of digits are separated from each other by a

special separator (by default - a space, but this can be easily changed by assigning your own

separator to the global variable ThsSeparator);

Int2Digs (i, n) - the same as Int2Str, but the required number of leading spaces is added

before the number so that the resulting string is at least n;

Num2Bytes (d) - forms the representation of the number of bytes (specified by the double

precision floating point parameter) in the form n or nK or nM or nG or nT - depending on the

parameter value;

S2Int (s) - the same as Str2Int, but works with a parameter of type PChar, not ANSI string;

cHex2Int (s) - similar to Hex2Int, but understands hexadecimal numbers, written according to

the rules of the C language (leading 0x characters are discarded);

Octal2Int (s), Binary2Int (s) - the purpose of these functions is obvious.

There is also a Format (s, ...) function - but in KOL it uses the wvsprintf API, so it doesn't

understand floating point formatting.

In addition, KOL has a number of functions to facilitate parsing (parsing) of

strings:
Parse (s, d) - returns part of string s up to the first of the encountered characters from string d,

leaving only the part after the encountered delimiter in the string s itself.

StrIsStartingFrom (s, p) - Checks that the beginning of string s matches string p.

StrSatisfy (s, p) - checks the string s against a pattern (the pattern can contain the mask

characters '*' and '?', Interpreted, respectively, as "any characters" and "one arbitrary character").

SkipSpaces(s) - skips spaces, moving s to the next printable character in the line.

DelimiterLast(s, d) - returns the position of the last separator character from string d in string

s;

IncludeTrailingChar (s, c) - returns s, adding character c if it is not already the last in the line;

ExcludeTrailingChar (s, c) - on the contrary, it removes the trailing c.

50

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
String Functions

A number of functions for working with strings in KOL have been moved,

sometimes with some changes, from the standard SysUtils module
I do not make any secret from this, the main reason is that in KOL projects it is undesirable to

use the SysUtils module itself, due to the increase in the size of the application by 20-30 KB, at

the same time these functions are often needed:

StrComp (s1, s2), StrLComp (s1, s2, n), StrCopy (s1, s2), StrCat (s1, s2), StrLen (s),

StrScanLen (s, c, n), StrScan (s, c), StrRScan (s, c), Trim (s), TrimLeft (s), TrimRight (s),

LowerCase (s), UpperCase (s), AnsiLowerCase (s), AnsiUpperCase (s).

And in addition to them there are: StrComp_NoCase (s1, s2), StrLComp_NoCase (s1, s2, n),

Str2LowerCase (s) - takes a PChar parameter, and performs string modification in place. And

also: RemoveSpaces (s), WAnsiUpperCase (s), WAnsiLowerCase (s).

4.1.1 String Functions - Syntax

function Int2Hex(Value: DWord; Digits: Integer): KOLString;

Converts integer Value into string with hex number. Digits parameter determines minimal

number of digits (will be completed by adding necessary number of leading zeroes).

function Int2Str(Value: Integer): KOLString;

Converts an integer to a string.

procedure Int2PChar(s: PAnsiChar; Value: Integer);

Converts Value to string and puts it into buffer s. Buffer must have enough size to store the

number converted: buffer overflow does not checked anyway!

function UInt2Str(Value: DWORD): AnsiString;

The same as Int2Str , but for unsigned integer value.

function Int2StrEx(Value, MinWidth: Integer): KOLString;

Like Int2Str , but resulting string filled with leading spaces to provide at least MinWidth

characters.

function Int2Rome(Value: Integer): KOLString;

Represents number 1..8999 to Rome number.

function Int2Ths(I: Integer): KOLString;

Converts integer into string, separating every three digits from each other by character

ThsSeparator. (Convert to thousands).

function Int2Digs(Value, Digits: Integer): KOLString;

Converts integer to string, inserting necessary number of leading zeroes to provide desired

length of string, given by Digits parameter. If resulting string is greater then Digits, string is not

truncated anyway.

50

50

51

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
String Functions

function Num2Bytes(Value: Double): KOLString;

Converts double float to string, considering it as a bytes count. If Value is sufficiently large,

number is represented in kilobytes (with following letter K), or in megabytes (M), gigabytes (G)

or terabytes (T). Resulting string number is truncated to two decimals (.XX) or to one (.X), if the

second is 0.

function S2Int(S: PKOLChar): Integer;

Converts null-terminated string to Integer. Scanning stopped when any non-digit character

found. Even empty string or string not containing valid integer number silently converted to 0.

function Str2Int(const Value: KOLString): Integer;

Converts string to integer. First character, which can not be recognized as a part of number,

regards as a separator. Even empty string or string without number silently converted to 0.

function Hex2Int(const Value: KOLString): Integer;

Converts hexadecimal number to integer. Scanning is stopped when first non-hexadicimal

character is found. Leading dollar ('$') character is skept (if present). Minus ('-') is not concerning

as a sign of number and also stops scanning.

function cHex2Int(const Value: KOLString): Integer;

As Hex2Int , but also checks for leading '0x' and skips it.

function Octal2Int(const Value: AnsiString): Integer;

Converts octal number to integer. Scanning is stopped on first non-octal digit (any char except

0..7). There are no checking if there octal numer in the parameter. If the first char is not octal

digit, 0 is returned.

function Binary2Int(const Value: AnsiString): Integer;

Converts binary number to integer. Like Octal2Int , but only digits 0 and 1 are allowed.

function ToRadix(number: Radix_int; radix, min_digits: Integer): KOLString;

Converts unsigned number to string representing it literally in a numeric base given by radix

parameter.

function FromRadixStr(var Rslt: Radix_int; s: PKOLChar; radix: Integer): PKOLChar;

Converts unsigned number from string representation in a numeric base given by a radix

parameter. Returns a pointer to a character next to the last digit of the number.

function FromRadix(const s: AnsiString; radix: Integer): Radix_int;

Converts unsigned number from string representation in a numeric base given by a radix

parameter. See also: FromRadixStr function.

51

51

51

52

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
String Functions

function InsertSeparators(const s: KOLString; chars_between: Integer; Separator:
KOLChar): KOLString;

Inserts given Separator between symbols in s, separating each portion of chars_between

characters with a Separator starting from right side. See also: Int2Ths function.

function oem2char(const s: AnsiString): AnsiString;

Converts string from OEM to ANSI.

function ansi2oem(const s: AnsiString): AnsiString;

Converts ANSI string to OEM.

function smartOem2ansiRus(const s: AnsiString): AnsiString;

Smartly converts string from OEM to ANSI (only Russian!). See code.

function StrComp(const Str1, Str2: PAnsiChar): Integer;

Compares two strings fast. -1: Str1<Str2; 0: Str1=Str2; +1: Str1>Str2

function StrLComp_NoCase(const Str1, Str2: PAnsiChar; MaxLen: Cardinal): Integer;

Compare two strings fast without case sensitivity. Terminating 0 is not considered, so if strings

are equal, comparing is continued up to MaxLen bytes. Since this, pass minimum of lengths as

MaxLen.

function StrComp_NoCase(const Str1, Str2: PAnsiChar): Integer;

Compares two strings fast without case sensitivity. Returns: -1 when Str1<Str2; 0 when

Str1=Str2; +1 when Str1>Str2

function StrLComp(const Str1, Str2: PAnsiChar; MaxLen: Cardinal): Integer;

Compare two strings (fast). Terminating 0 is not considered, so if strings are equal, comparing is

continued up to MaxLen bytes. Since this, pass minimum of lengths as MaxLen.

function StrCopy(Dest, Source: PAnsiChar): PAnsiChar;

Copy source string to destination (fast). Pointer to Dest is returned.

function StrCat(Dest, Source: PAnsiChar): PAnsiChar;

Append source string to destination (fast). Pointer to Dest is returned.

function StrLen(const Str: PAnsiChar): Cardinal;

StrLen returns the number of characters in Str, not counting the null terminator.

function StrScanLen(Str: PAnsiChar; Chr: AnsiChar; Len: Integer): PAnsiChar;

Fast scans string Str of length Len searching character Chr. Pointer to a character next to found

or to Str[Len] (if no one found) is returned.

50

53

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
String Functions

function StrScan(Str: PAnsiChar; Chr: AnsiChar): PAnsiChar;

Fast search of given character in a string. Pointer to found character (or nil) is returned.

function StrRScan(Str: PAnsiChar; Chr: AnsiChar): PAnsiChar;

StrRScan returns a pointer to the last occurrence of Chr in Str. If Chr does not occur in Str,

StrRScan returns NIL. The null terminator is considered to be part of the string.

function StrIsStartingFrom(Str, Pattern: PKOLChar): Boolean;

Returns True, if string Str is starting from Pattern, i.e. if Copy(Str, 1, StrLen (Pattern)) =

Pattern. Str must not be nil!

function StrIsStartingFromNoCase(Str, Pattern: PAnsiChar): Boolean;

Like StrIsStartingFrom above, but without case sensitivity.

function TrimLeft(const S: KOLString): KOLString;

Removes spaces, tabulations and control characters from the starting of string S.

function TrimRight(const S: KOLString): KOLString;

Removes spaces, tabulates and other control characters from the end of string S.

function Trim(const S: KOLString): KOLString;

Makes TrimLeft and TrimRight for given string.

function RemoveSpaces(const S: KOLString): KOLString;

Removes all characters less or equal to ' ' in S and returns it.

procedure Str2LowerCase(S: PAnsiChar);

Converts null-terminated string to lowercase (inplace).

function LowerCase(const S: Ansistring): Ansistring;

Converts Ansistring to lowercase.

function UpperCase(const S: Ansistring): Ansistring;

Converts Ansistring to uppercase.

function AnsiUpperCase(const S: Ansistring): Ansistring;

Converts Ansistring to uppercase.

function AnsiLowerCase(const S: Ansistring): Ansistring;

52

53

53 53

54

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
String Functions

Converts Ansistring to lowercase.

function KOLUpperCase(const S: KOLString): KOLString;

Converts KOLstring to uppercase.

function KOLLowerCase(const S: KOLString): KOLString;

Converts KOLstring to lowercase.

function WUpperCase(const S: KOLWideString): KOLWideString;

Converts KOLwidestring to uppercase.

function WLowerCase(const S: KOLWideString): KOLWideString;

Converts KOLWidestring to lowercase.

function WAnsiUpperCase(const S: KOLWideString): KOLWideString;

Converts KOLwideansistring to uppercase.

function WAnsiLowerCase(const S: KOLWideString): KOLWideString;

Converts KOLwideansistring to lowercase.

function WStrComp(const S1, S2: KOLWideString): Integer;

Compare two KOLwidestrings (fast). Terminating 0 is not considered, so if strings are equal,

comparing is continued up to MaxLen bytes. Since this, pass minimum of lengths as MaxLen.

function _WStrComp(S1, S2: PWideChar): Integer;

function _WStrLComp(S1, S2: PWideChar; Len: Integer): Integer;

function WStrScan(Str: PWideChar; Chr: WideChar): PWideChar;

Fast search of given character in a string. Pointer to found character (or nil) is returned.

function WStrRScan(Str: PWideChar; Chr: WideChar): PWideChar;

StrRScan returns a pointer to the last occurrence of Chr in Str. If Chr does not occur in Str,

StrRScan returns NIL. The null terminator is considered to be part of the string.

function AnsiCompareStr(const S1, S2: KOLString): Integer;

AnsiCompareStr compares S1 to S2, with case-sensitivity. The compare operation is controlled

by the current Windows locale. The return value is the same as for CompareStr.

function _AnsiCompareStr(S1, S2: PKOLChar): Integer;

The same, but for PChar ANSI strings

function AnsiCompareStrNoCase(const S1, S2: KOLString): Integer;

AnsiCompareStrNoCase compares S1 to S2, without case-sensitivity. The compare operation is

controlled by the current Windows locale. The return value is the same as for CompareStr.

53

53

55

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
String Functions

function _AnsiCompareStrNoCase(S1, S2: PKOLChar): Integer;

The same, but for PChar ANSI strings

function AnsiCompareText(const S1, S2: KOLString): Integer;

function AnsiEq(const S1, S2: KOLString): Boolean;

Returns True, if AnsiLowerCase (S1) = AnsiLowerCase (S2). I.e., if ANSI stringsare equal to

each other without caring of characters case sensitivity.

function AnsiCompareStrA(const S1, S2: AnsiString): Integer;

AnsiCompareStr compares S1 to S2, with case-sensitivity. The compare operation is

controlled by the current Windows locale. The return value is the same as for CompareStr.

function _AnsiCompareStrA(S1, S2: PAnsiChar): Integer;

The same, but for PChar ANSI strings.

function AnsiCompareStrNoCaseA(const S1, S2: AnsiString): Integer;

AnsiCompareStr compares S1 to S2, with case-sensitivity. The compare operation is

controlled by the current Windows locale. The return value is the same as for CompareStr.

function _AnsiCompareStrNoCaseA(S1, S2: PAnsiChar): Integer;

The same, but for PChar ANSI strings.

function AnsiCompareTextA(const S1, S2: AnsiString): Integer;

function LStrFromPWCharLen(Source: PWideChar; Length: Integer): AnsiString;

from Delphi5 - because D2 does not contain it.

function LStrFromPWChar(Source: PWideChar): AnsiString;

from Delphi5 - because D2 does not contain it.

function CopyEnd(const S: KOLString; Idx: Integer): KOLString;

Returns copy of source string S starting from Idx up to the end of string S. Works correctly for

case, when Idx > Length(S) (returns empty string for such case).

function CopyTail(const S: KOLString; Len: Integer): KOLString;

Returns last Len characters of the source string. If Len > Length(S), entire string S is returned.

procedure DeleteTail(var S: KOLString; Len: Integer);

Deletes last Len characters from string.

function IndexOfChar(const S: KOLString; Chr: KOLChar): Integer;

Returns index of given character (1..Length(S)), or -1 if a character not found.

function IndexOfCharsMin(const S, Chars: KOLString): Integer;

53 53

54

54

56

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
String Functions

Returns index (in string S) of those character, what is taking place in Chars string and located

nearest to start of S. If no such characters in string S found, -1 is returned.

function IndexOfWideCharsMin(const S, Chars: KOLWideString): Integer;

Returns index (in wide string S) of those wide character, what is taking place in Chars wide string

and located nearest to start of S. If no such characters in string S found, -1 is returned.

function IndexOfStr(const S, Sub: KOLString): Integer;

Returns index of given substring in source string S. If found, 1..Length(S)-Length(Sub), if not

found, -1.

function Parse(var S: KOLString; const Separators: KOLString): KOLString;

Returns first characters of string S, separated from others by one of characters, taking place in

Separators string, assigning a tail of string (after found separator) to source string. If no

separator characters found, source string S is returned, and source string itself becomes empty.

function WParse(var S: KOLWideString; const Separators: KOLWideString):
KOLWideString;

Returns first wide characters of wide string S, separated from others by one of wide characters,

taking place in Separators wide string, assigning a tail of wide string (following found separator)

to the source one. If there are no separator characters found, source wide string S is returned,

and source wide

 string itself becomes empty.

function ParsePascalString(var S: KOLString; const Separators: KOLString):
KOLString;

Returns first characters of string S, separated from others by one of characters, taking place in

Separators string, assigning a tail of string (after the found separator) to source string. If there

are no separator characters found, the source string S is returned, and the source string itself

becomes empty. Additionally: if the first (after a blank space) is the quote "'" or '#', pascal string

is assumung first and is converted to usual string (without quotas) before analizing of other

separators.

function String2PascalStrExpr(const S: KOLString): KOLString;

Converts string to Pascal-like string expression (concatenation of strings with quotas and

characters with leading '#').

function StrEq(const S1, S2: AnsiString): Boolean;

Returns True, if LowerCase (S1) = LowerCase (S2). I.e., if strings are equal to each other

without caring of characters case sensitivity (ASCII only).

function WAnsiEq(const S1, S2: KOLWideString): Boolean;

Returns True, if AnsiLowerCase (S1) = AnsiLowerCase (S2). I.e., if ANSI stringsare equal to

each other without caring of characters case sensitivity.

function StrIn(const S: AnsiString; const A: array of AnsiString): Boolean;

53 53

53 53

57

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
String Functions

Returns True, if S is "equal" to one of strings, taking place in A array. To check equality, StrEq

function is used, i.e. comaprison is taking place without case sensitivity.

function WStrIn(const S: KOLWideString; const A: array of KOLWideString): Boolean;

Returns True, if S is "equal" to one of strings, taking place in A array. To check equality,

WAnsiEq function is used, i.e. comaprison is taking place without case sensitivity.

function CharIn(C: KOLChar; const A: TSetOfChar): Boolean;

To replace expressions like S[1] in ['0'..'z'] to CharIn(S[1], ['0'..'z']) (and to avoid problems

with Unicode version of code).

function StrIs(const S: AnsiString; const A: Array of AnsiString; var Idx:
Integer): Boolean;

Returns True, if S is "equal" to one of strings, taking place in A array, and in such Case Idx also is

assigned to an index of A element equal to S. To check equality, StrEq function is used, i.e.

comaprison is taking place without case sensitivity.

function IntIn(Value: Integer; const List: array of Integer): Boolean;

Returns TRUE, if Value is found in a List.

function _StrSatisfy(S, Mask: PKOLChar): Boolean;

function _2StrSatisfy(S, Mask: PKOLChar): Boolean;

function StrSatisfy(const S, Mask: KOLString): Boolean;

Returns True, if S is satisfying to a given Mask (which can contain wildcard symbols '*' and '?'

interpeted correspondently as 'any set of characters' and 'single any character'. If there are no

such wildcard symbols in a Mask, result is True only if S is maching to Mask string.)

function StrReplace(var S: KOLString; const From, ReplTo: KOLString): Boolean;

Replaces first occurance of From to ReplTo in S, returns True, if pattern From was found and

replaced.

function KOLStrReplace(var S: KOLString; const From, ReplTo: KOLString): Boolean;

Replaces first occurance of From to ReplTo in S, returns True, if pattern From was found and

replaced.

function WStrReplace(var S: KOLWideString; const From, ReplTo: KOLWideString):
Boolean;

Replaces first occurance of From to ReplTo in S, returns True, if pattern From was found and

replaced. See also function StrReplace . This function is not available in Delphi2 (this version of

Delphi does not support KOLWideString type).

function StrRepeat(const S: KOLString; Count: Integer): KOLString;

Repeats given string Count times. E.g., StrRepeat('A', 5) gives 'AAAAA'.

function WStrRepeat(const S: KOLWideString; Count: Integer): KOLWideString;

56

56

56

57

58

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
String Functions

Repeats given wide string Count times. E.g., StrRepeat ('A', 5) gives 'AAAAA'.

procedure NormalizeUnixText(var S: AnsiString);

In the string S, replaces all occurances of character #10 (without leading #13) to the character

#13.

procedure Koi8ToAnsi(s: PAnsiChar);

Converts Koi8 text to Ansi (in place)

function StrPCopy(Dest: PAnsiChar; const Source: Ansistring): PAnsiChar;

Copy string into null-terminated.

function StrLCopy(Dest: PAnsiChar; const Source: PAnsiChar; MaxLen: Cardinal):
PAnsiChar;

Copy first MaxLen characters of the Source string into null-terminated Dest.

function DelimiterLast(const Str, Delimiters: KOLString): Integer;

Returns index of the last of delimiters given by same named parameter among characters of Str.

If there are no delimiters found, length of Str is returned. This function is intended mainly to use

in filename parsing functions.

function __DelimiterLast(Str, Delimiters: PKOLChar): PKOLChar;

Returns address of the last of delimiters given by Delimiters parameter among characters of Str.

If there are no delimeters found, position of the null terminator in Str is returned. This function is

intended mainly to use in filename parsing functions.

function W__DelimiterLast(Str, Delimiters: PWideChar): PWideChar;

function SkipSpaces(P: PKOLChar): PKOLChar;

Skips all characters ' ' in a string.

function CompareMem(P1, P2: Pointer; Length: Integer): Boolean;

Fast compare of two memory blocks.

function AllocMem(Size: Integer): Pointer;

Allocates global memory and unlocks it.

procedure DisposeMem(var Addr: Pointer);

Locks global memory block given by pointer, and frees it. Does nothing, if the pointer is nil.

57

59

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Working with long integers & Floating Point

4.2 Working with long integers & Floating Point

I64 vs Int64

Delphi, starting with version 5, introduced the Int64 data type for working with 8-byte integers.

But earlier versions of Delphi did not have this data type. In order to be able to work with them

in older versions of Delphi, KOL introduces its own I64 data type and has developed a set of

functions for working with this data type:

MakeInt64(lo, hi): I64 - generates a long integer from two ordinary integers;

Int2Int64(i): I64 - "converts" an integer data type to a long integer (equivalent to calling

MakeInt64 (i, 0));

IncInt64(I, delta) - increases I: I64 by an integer delta;

DecInt64(I, delta) - decreases I: I64 by delta;

Add64(I1, I2) - adds two numbers like I64;

Sub64(I1, I2) - subtracts I2 from I1;

Neg64(I) - returns -I;

Mul64i(I, i) - multiplies the doubled integer I by the usual integer i;

Div64i(I, i) - divides a doubled whole into an ordinary whole;

Mod64i(I, i) - calculates the remainder of dividing I by i;

Sgn64i(I) - returns the "sign" of the number I (ie -1 if I is negative, 0 if I = 0, or 1 if I> 0);

Cmp64(I1, I2) - compares two doubled integers (also returns -1, 0, 1, depending on whether

the first parameter of the second is less, they are equal or the first is greater than the second);

Int64_2Str(I) - converts a doubled integer to a string;

Str2Int64(s) - converts a number in string representation to a doubled integer;

Int64_2Double(I) - converts a doubled integer to a floating point number;

Double2Int64(d) - converts a floating point number to a double integer.

Nobody bothers, however, to use the Int64 data type built into Delphi of lower versions, but to

convert such numbers to a string and back, I still recommend using the Int64_2Str, Str2Int64

functions, performing the appropriate data type conversions.

The use of the other above functions only makes sense if the project is being developed in

Delphi 3 or 2.

Floating Point conversions. Floating Point math

In order to avoid the need to include the SysUtils module, a set of functions has been

introduced in KOL to convert floating point numbers to a string and vice versa. (Normal floating

point operations do not require special functions or the connection of the SysUtils module).

These are the following functions: Str2Double (s), Double2Str (d), Str2Extended (s),

Extended2Str (e).

60

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Working with long integers & Floating Point

In addition, KOL includes a couple of functions from the section of mathematics that are used in

itself, these are IntPower (i, n), and IsNAN (d), as well as the constant NAN, which denotes an

impossible floating point number (equal to 0/0 uncertainty) ...

Other mathematical functions (trigonometry, logarithms, finding the maximum, minimum

number in an array, summation, static and economic functions), similar to the standard ones, are

moved to a separate module kolmath.pas (when it is turned on, the err.pas module is also

added to the project, which is used to support exception handling, and increases the weight of

the application by about 6KB).

4.2.1 Long Integers & Floating Point - Syntax

type I64 = record
// 64 bit integer record. Use it and correspondent functions below in KOL projects
to avoid dependancy from Delphi version (earlier versions of Delphi had no Int64
type).
 Lo, Hi: DWORD;

end;

type PI64 = ̂ I64 ;

function MakeInt64(Lo, Hi: DWORD): I64 ;

Generates a long integer from two ordinary integers.

function Int2Int64(X: Integer): I64 ;

"Converts" an integer data type to a long integer (equivalent to calling MakeInt64 (i, 0))

procedure IncInt64(var I64 : I64 ; Delta: Integer);

Increases I: I64 by an integer delta.

I64 := I64 + Delta;

procedure DecInt64(var I64 : I64 ; Delta: Integer);

Decreases I: I64 by delta.

I64 := I64 - Delta;

function Add64(const X, Y: I64): I64 ;

Adds two numbers like I64.

Result := X + Y;

function Sub64(const X, Y: I64): I64 ;

Subtracts I2 from I1.

Result := X - Y;

60

60

60

60 60

60 60

60 60

60 60

60 60

60 60

61

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Working with long integers & Floating Point

function Neg64(const X: I64): I64 ;

Returns -I.

Result := -X;

function Mul64i(const X: I64 ; Mul: Integer): I64 ;

Multiplies the doubled integer I by the usual integer i.

Result := X * Mul;

function Div64i(const X: I64 ; D: Integer): I64 ;

Divides a doubled whole into an ordinary whole.

Result := X div D;

function Mod64i(const X: I64 ; D: Integer): Integer;

Calculates the remainder of dividing I by i.

Result := X mod D;

function Sgn64(const X: I64): Integer;

Result := sign(X); i.e.:

if X < 0 then -1

if X = 0 then 0

if X > 0 then 1

function Cmp64(const X, Y: I64): Integer;

Compares two doubled integers (also returns -1, 0, 1, depending on whether the first parameter

of the second is less, they are equal or the first is greater than the second.

Result := sign(X - Y); i.e.

if X < Y then -1

if X = Y then 0

if X > Y then 1

function Int64_2Str(X: I64): AnsiString;

Converts a doubled integer to a string.

function Int64_2Hex(X: I64 ; MinDigits: Integer): KOLString;

function Str2Int64(const S: AnsiString): I64 ;

Converts a number in string representation to a doubled integer.

function Int64_2Double(const X: I64): Double;

function IsNan(const AValue: Double): Boolean;

60 60

60 60

60 60

60

60

60

60

60

60

60

62

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Working with long integers & Floating Point

Checks if an argument passed is NAN.

function IsInfinity(const AValue: Double): Boolean;

Checks if an argument passed is Infinite.

function IntPower(Base: Extended; Exponent: Integer): Extended;

Result := Base ^ Exponent;

function NextPowerOf2(n: DWORD): DWORD;

0->1, 1->1, 2->2, 3->4, 4->4, 5->8, ...

function Str2Double(const S: KOLString): Double;

function Str2Extended(const S: KOLString): Extended;

function Double2Str(D: Double): KOLString;

function Extended2Str(E: Extended): KOLString;

function Extended2StrDigits(D: Double; n: Integer): KOLString;

Converts floating point number to string, leaving exactly n digits following floating point.

function Double2StrEx(D: Double): KOLString;

experimental, do not use

function GetBits(N: DWORD; first, last: Byte): DWord;

Retuns bits starting from <first> and to <last> inclusively.

function GetBitsL(N: DWORD; from, len: Byte): DWord;

Retuns len bits starting from index <from>.

4.3 Working with Date and Time

The SysUtils standard module from Delphi VCL declares the TDateTime data type. In fact, it is

equivalent to a double precision floating point number. In its whole part the day is stored, in the

fractional part - the time of the day as a fractional part of the day, considering the day as a unit.

Similar to the TDateTime datatype in the VCL (the SysUtils module),

KOL introduces its own TDateTime datatype. With the difference that if SysUtils.TDateTime as a

floating point number counts in its integer part the days from December 31, 1899, in

KOL.TDateTime the countdown starts from January 1, 1 AD (era "from the birth of Christ") - by

Gregorian calendar. I did this because I think this data type is convenient not only for

communicating with SQL servers, the developers of the standards for which decided that before

the 20th century there was nothing that could be counted.

63

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Working with Date and Time

If someone needs compatibility with SysUtils.TDatetime, then to convert from a KOL date to a

VCL, it is enough to add the VCLDate0 constant (equal to 693 594, i.e. the number of days from

January 1, 1 to December 31, 1899) , and for the reverse transformation, subtract the same

constant. For conversion convenience, such a constant is declared in KOL under the name

VCLDate0.

The set of functions for working with dates and times is slightly different from that of SysUtils:

Now - returns the current system date and time;

Date - returns today's date (discarding the time);

DecodeDate(d, Y, M, D) - decodes the date;

DecodeDateFully(d, Y, M, DW, D) - decodes the date (and day of the week);

DayOfWeek(D) - decodes only the day of the week;

EncodeDate(Y, M, D, T) - encodes date and time;

SystemTime2DateTime(ST, D) - converts the TSystemTime structure to TDateTime;

DateTime2SystemTime(D, ST) - performs the inverse transformation;

Date2StrFmt(s, D) - formats the date into a string;

Time2StrFmt(s, D) - formats the time into a string;

DateTime2StrShort(D) - formats the date into a string using the default short system format;

Str2DateTimeFmt(s1, s2) - reads the date and time from the string according to the specified

format;

Str2DateTimeShort(s) - similar to the previous function, but the system default format is used;

Str2DateTimeShortEx(s) - in addition to the previous function, uses separators (depending on

the regional settings of the system) so as not to confuse the date with the time.

In addition to working with the TDateTime type, KOL has a number of functions for working with

the TSystemTime structure directly through the API (floating point numbers are not used in this

case):

CompareSystemTime(ST1, ST2) - compares two dates (structures of type TSystemTime), and

returns -1, 0, or 1, depending on the result of the comparison;

IncDays(ST, n) - increases the date by the specified number of days (if n <0, then decreases);

IncMonths(ST, n) - increases the date by the specified number of months (for n <0, it

decreases);

SystemDate2Str(ST, localeID, dfltDateFmt, s) - formats the date in accordance with the

specified parameters;

SystemTime2Str(ST, localeID, flgs, s) - formats the time in accordance with the specified

parameters.

4.3.1 Date and Time - Syntax

type TDateFormat =(dfShortDate, dfLongDate);

Date formats available to use in formatting date/time to string.64

64

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Working with Date and Time

type TTimeFormatFlag =(tffNoMinutes, tffNoSeconds, tffNoMarker, tffForce24);

Additional flags, used for formatting time.

type TTimeFormatFlags = Set of TTimeFormatFlag ;

Set of flags, used for formatting time.

var MonthDays: array[Boolean] of TDayTable =((31, 28, 31, 30, 31, 30, 31, 31, 30,
31, 30, 31),(31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31));

The MonthDays array can be used to quickly find the number of days in a month:

MonthDays[IsLeapYear (Y), M].

var SecsPerDay = 24* 60* 60;

Seconds per day.

var MSecsPerDay = SecsPerDay* 1000;

Milliseconds per day.

var VCLDate0 = 693594;

Value to convert VCL "date 0" to KOL "date 0" and back. This value corresponds to 30-Dec-

1899, 0:00:00. So, to convert VCL date to KOL date, just subtract this value from VCL date. And

to convert back from KOL date to VCL date, add this value to KOL date.

function Now: TDateTime;

Returns local date and time on running PC.

function Date: TDateTime;

Returns today local date.

procedure DecodeDateFully(DateTime: TDateTime; var Year, Month, Day, DayOfWeek :
WORD);

Decodes date string and day of the week.

procedure DecodeDate(DateTime: TDateTime; var Year, Month, Day: WORD);

Decodes date.

function EncodeDate(Year, Month, Day: WORD; var DateTime: TDateTime): Boolean;

Encodes date and time.

function CompareSystemTime(const D1, D2: TSystemTime): Integer;

Compares to TSystemTime records. Returns -1, 0, or 1 if, correspondantly, D1 < D2, D1 = D2

and D1 > D2.

64

65

65

65

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Working with Date and Time

procedure IncDays(var SystemTime: TSystemTime; DaysNum: Integer);

Increases/decreases day in TSystemTime record onto given days count (can be negative).

procedure IncMonths(var SystemTime: TSystemTime; MonthsNum: Integer);

Increases/decreases month number in TSystemTime record onto given months count (can be

negative). Correct result is not garantee if day number is incorrect for newly obtained month.

function IsLeapYear(Year: Integer): Boolean;

Returns True, if given year is "leap" (i.e. has 29 days in the February).

function DayOfWeek(Date : TDateTime): Integer;

Returns day of week (0..6) for given date.

function SystemTime2DateTime(const SystemTime: TSystemTime; var DateTime: TDateTime
): Boolean;

Converts TSystemTime record to XDateTime variable.

function DateTime2SystemTime(const DateTime: TDateTime; var SystemTime: TSystemTime
): Boolean;

Converts TDateTime variable to TSystemTime record.

function DateTime_System2Local(DTSys: TDateTime): TDateTime;

Converts DTSys representing system time (+0 Grinvich) to local time.

function DateTime_Local2System(DTLoc: TDateTime): TDateTime;

Converts DTLoc representing local time to system time (+0 Grinvich)

function FileTime2DateTime(const ft: TFileTime; var DT: TDateTime): Boolean;

function DateTime2FileTime(DT: TDateTime; var ft: TFileTime): Boolean;

procedure DivMod(Dividend: Integer; Divisor: Word; var Result, Remainder: Word);

Dividing of integer onto divisor with obtaining both result of division and remainder.

function SystemDate2Str(const SystemTime: TSystemTime; const LocaleID: DWORD; const

DfltDateFormat: TDateFormat ; const DateFormat: PKOLChar): KOLString;

Formats date, stored in TSystemTime record into string, using given locale and date/time

formatting flags. (E.g.: GetUserDefaultLangID).

function SystemTime2Str(const SystemTime: TSystemTime; const LocaleID: DWORD; const

Flags: TTimeFormatFlags ; const TimeFormat: PKOLChar): KOLString;

Formats time, stored in TSystemTime record into string, using given locale and date/time

formatting flags.

64

63

64

66

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Working with Date and Time

function Date2StrFmt(const Fmt: KOLString; D: TDateTime): KOLString;

Represents date as a string correspondently to Fmt formatting string. See possible pictures in

definition of the function Str2DateTimeFmt (the first part). If Fmt string is empty, default

system date format for short date string used.

function Time2StrFmt(const Fmt: KOLString; D: TDateTime): KOLString;

Represents time as a string correspondently to Fmt formatting string. See possible pictures in

definition of the function Str2DateTimeFmt (the second part). If Fmt string is empty, default

system time format for short date string used.

function DateTime2StrShort(D: TDateTime): KOLString;

Formats date and time to string in short date format using current user locale.

function Str2DateTimeFmt(const sFmtStr, sS: KOLString): TDateTime;

Restores date or/and time from string correspondently to a format string.

Date and time formatting string can contain following pictures (case

sensitive):

DATE PICTURES
d Day of the month as digits without leading zeros for single digit days.

dd Day of the month as digits with leading zeros for single digit days

ddd Day of the week as a 3-letter abbreviation as specified by a

LOCALE_SABBREVDAYNAME value.

dddd Day of the week as specified by a LOCALE_SDAYNAME value.

M Month as digits without leading zeros for single digit months.

MM Month as digits with leading zeros for single digit months

MMM Month as a three letter abbreviation as specified by a

LOCALE_SABBREVMONTHNAME value.

MMMM Month as specified by a LOCALE_SMONTHNAME value.

y Year represented only be the last digit.

yy Year represented only be the last two digits.

yyyy Year represented by the full 4 digits.

gg Period/era string as specified by the CAL_SERASTRING value. The gg format

picture in a date string is ignored if there is no associated era string. In Enlish

locales, usual values are BC or AD.

TIME PICTURES
h Hours without leading zeros for single-digit hours (12-hour clock).

66

66

64

67

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Working with Date and Time

hh Hours with leading zeros for single-digit hours (12-hour clock).

H Hours without leading zeros for single-digit hours (24-hour clock).

HH Hours with leading zeros for single-digit hours (24-hour clock).

m Minutes without leading zeros for single-digit minutes.

mm Minutes with leading zeros for single-digit minutes.

s Seconds without leading zeros for single-digit seconds.

ss Seconds with leading zeros for single-digit seconds.

t One character–time marker string (usually P or A, in English locales).

tt Multicharacter–time marker string (usually PM or AM, in English locales).

E.g., 'D, yyyy/MM/dd h:mm:ss'. See also Str2DateTimeShort function.

function Str2TimeFmt(const sFmtStr, sS: KOLString): TDateTime;

Same as above but for time only

function Str2DateTimeShort(const S: KOLString): TDateTime;

Restores date and time from string correspondently to current user locale.

function Str2DateTimeShortEx(const S: KOLString): TDateTime;

Like Str2DateTimeShort above, but uses locale defined date and time separators to avoid

recognizing time as a date in some cases.

function Str2TimeShort(const S: KOLString): TDateTime;

Like Str2DateTimeShort but for time only.

4.4 Files and Folders

Low Level work with Files and Folders in KOL

Since KOL was developed to create projects primarily for the Windows environment, and the

most efficient way to work with files in this environment is to work directly with the

corresponding Windows API functions, a number of functions have been created for KOL to

work with files at this level. I do not recommend using Pascal functions (Append, Rewrite,

Reset, ...), even though they claim to be some kind of platform independence, due to their

certain limitations. They also add a few kilobytes of completely useless code to the application.

At the same time, working with Windows API functions directly is somewhat inconvenient due to

too many parameters that must be specified for almost everything. In my opinion, it is more

convenient to work with KOL functions:

FileCreate(s, flags) - creates or opens a file for reading or writing, depending on the flags (for

example, ofOpenRead or ofOpenExisting or ofShareDenyWrite - opens an existing file for

reading, disallowing writing to this file until the created descriptor is closed. must be

concatenated with the or operation):

67

67

67

68

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Files and Folders

accessor group - only one flag

needs to be selected

ofOpenRead, ofOpenWrite, ofOpenReadWrite

group of the way to create or

open Existing file - only one

flag should be selected

ofOpenExisting, ofOpenAlways, ofCreateNew,

ofTruncateExisting

(optional) sharing group ofShareDenyWrite, ofShareDenyRead,

ofShareDenyNone

attribute group ofAttrReadOnly, ofAttrHidden, ofattrSystem,

ofAttrTemp, ofAttrArchive, ofAttrOffline

The result of calling the FileCreate function is a descriptor of type hFile (just an unsigned 32-bit

number) that is used in other file functions to identify an open file object. Using the same

descriptor, it is also possible to call API functions for working with files.

FileClose(f) - closes the file;

FileExists(s) - checks for the existence of a file at the specified path;

FileRead(f, buffer, n) - reads bytes from a file into memory;

FileWrite(f, buffer, n) - writes bytes from memory to a file;

FileEOF(f) - checks if the end of the file has been reached (while reading);

FileSeek(f, moveto, movemethod) - moves the read / write pointer in the file;

File2Str(f) - reads the rest of the file as a string.

In addition, there are a number of functions for opening, reading or writing, and closing a file -

in one call (and other functions for working with a file by name, without creating a descriptor in

the program):

StrSaveToFile(fname, s) - creates or overwrites a file from string s in RAM;

StrLoadFromFile(fname) - reads the entire file into a line;

Mem2File(fname, mem, n) - writes a piece of memory to a file;

File2Mem(fname, mem, n) - reads the entire file into a buffer in memory;

FileTimeCompare(fname1, fname2) - compares the time of the last modification of two files

and returns, depending on the results, -1, 0 or 1;

FileSize(fname) - returns the file size (64-bit integer);

ChangeFileExt(fname, ext) - changes the extension of the specified file.

69

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Files and Folders

Also, there are a number of functions for working with directories (folders), the names of

directories and temporary files, and with disks:

GetStartDir - returns the path to the directory in which the application was started (I

recommend using this function, not GetWorkDir),

DirectoryExists(s) - checks the existence of a directory;

DirectoryEmpty(s) - checks for the presence of files (and subdirectories) in the specified

directory (true is returned if the directory is empty, according to the function name);

DirectoryHasSubdirs(s) - checks for the presence of nested subdirectories in the specified

directory;

CheckDirectoryContent(s, subdirsonly, mask) - checks for the presence of files and

subdirectories specified by the mask;

CreateDir(s) - creates a directory;

ForceDirectories(s) - creates a directory, ensuring, if necessary, the creation of all overlying

directories specified in the path s;

IncludeTrailingPathDelimiter(s)- returns the path s, adds a path separator (character '\') if

necessary. In fact, most KOL functions that return a directory path provide a trailing slash ('\'), but

sometimes the directory name can be obtained in another way (for example, as a result of

manually entering the path by the user in the edit window;

ExcludeTrailingPathDelimiter(s) - in contrast to the previous function, discards the trailing

backslash;

FilePathShortened(s, n) - formats the path to the file, shortening it to a maximum of n

characters (intermediate directories are discarded from the middle and replaced with ellipsis '...');

FilePathShortenPixels(s, DC, n) - similar to the previous function, but the length of the textual

representation of the path "fits" into the size of n pixels on the DC canvas;

ExtractFilePath(s) - extracts only the path to the file directory;

ExtractFileName(s) - extracts the name of the file with the extension;

ExtractFileNameWOExt(s) - extracts file name without extension;

ExtractFileExt(s) - extracts only the extension (the first character in the result string will be '.',

except in the case of an empty extension);

GetSystemDir - returns the path to the Windows system directory (Windows \ System32 or

another, depending on the Windows version);

GetWindowsDir - returns the path to the directory of Windows itself;

GetWorkDir - returns the path to the "working" directory;

GetTempDir - returns the path to the directory intended for storing temporary files (it is best to

create your temporary files in this directory);

CreateTempFile(s, s1) - returns a string that can be used as the name of the temporary file

(note that it does not create the file itself);

GetFileListStr(s) - returns a string containing a list (through the symbol with code # 13) of all

files in the specified directory;

DeleteFile2Recycle(s) - deletes the specified file (or the list of files listed with delimiter # 13) to

the trash (as opposed to the DeleteFile (s) API function);

DeleteFiles(s) - deletes files by mask (as usual, characters '*' and '?' are allowed when specifying

a mask template;

CopyMoveFiles(s1, s2, move) - copies or moves the specified (in a list, through the # 13

symbol, template symbols are also allowed) files to the specified directory;

70

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Files and Folders

DiskFreeSpace(s) - returns the number of free bytes on the disk (result of type I64);

DirectorySize(s) - returns the size of the directory (along with all subdirectories, the result is

also of type I64).

In addition to the low-level file access functions, KOL also contains tools for working with

streams , but more on that later (since streams are already objects, and now I'm not touching

objects for now).

4.4.1 Files and Folders - Syntax

var ofOpenRead = O_RDONLY $80000000;

Use this flag (in combination with others) to open file for "read" only.

var ofOpenWrite = O_WRONLY $40000000;

Use this flag (in combination with others) to open file for "write" only.

var ofOpenReadWrite = O_RDWR $C0000000;

Use this flag (in combination with others) to open file for "read" and "write".

var ofShareExclusive = $10 $00;

Use this flag (in combination with others) to open file for exclusive use.

var ofShareDenyWrite = $20 $01;

Use this flag (in combination with others) to open file in share mode, when only attempts to

open it in other process for "write" will be impossible. I.e., other processes could open this file

simultaneously for read only access.

var ofShareDenyRead = 0 $02;

Use this flag (in combination with others) to open file in share mode, when only attempts to

open it for "read" in other processes will be disabled. I.e., other processes could open it for

"write" only access.

var ofShareDenyNone = $30 $03;

Use this flag (in combination with others) to open file in full sharing mode. I.e. any process will

be able open this file using the same share flag.

var ofCreateNew = O_CREAT or O_TRUNC $100;

Default creation disposition. Use this flag for creating new file (usually for write access.

var ofCreateAlways = O_CREAT $200;

Use this flag (in combination with others) to open existing or creating new file. If existing file is

opened, it is truncated to size 0.

105

71

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Files and Folders

var ofOpenExisting = 0 $300;

Use this flag (in combination with others) to open existing file only.

var ofOpenAlways = O_CREAT $400;

Use this flag (in combination with others) to open existing or create new (if such file is not yet

exists).

var ofTruncateExisting = O_TRUNC $500;

Use this flag (in combination with others) to open existing file and truncate it to size 0.

var ofAttrReadOnly = 0 $10000;

Use this flag to create Read-Only file (?).

var ofAttrHidden = 0 $20000;

Use this flag to create hidden file.

var ofAttrSystem = 0 $40000;

Use this flag to create system file.

var ofAttrTemp = 0 $1000000;

Use this flag to create temp file.

var ofAttrArchive = 0 $200000;

Use this flag to create archive file.

var ofAttrCompressed = 0 $8000000;

Use this flag to create compressed file. Has effect only on NTFS, and only if ofAttrCompressed is

not specified also.

var ofAttrOffline = 0 $10000000;

Use this flag to create offline file.

function WFileCreate(const FileName: KOLWideString; OpenFlags: DWord): THandle;

function FileCreate(const FileName: KOLString; OpenFlags: DWord): THandle;

Call this function to open existing or create new file. OpenFlags parameter can be a combination

of up to three flags (by one from each group:

72

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Files and Folders

ofOpenRead , ofOpenWrite

, ofOpenReadWrite

1st group. Here You decide wish You open file for read, write

or read-and-write operations.

ofShareExclusive ,

ofShareDenyWrite ,

ofShareDenyRead ,

ofShareDenyNone

2nd group - sharing. Here You can mark out sharing mode,

which is used to open file.

ofCreateNew ,

ofCreateAlways ,

ofOpenExisting ,

ofOpenAlways ,

ofTruncateExisting

3rd group - creation disposition. Here You determine, either

to create new or open existing file and if to truncate existing

or not.

function FileClose(Handle: THandle): Boolean;

Call it to close opened earlier file.

function FileExists(const FileName: KOLString): Boolean;

Returns True, if given file exists.

Note (by Dod): It is not documented in a help for GetFileAttributes, but it seems that under NT-

based Windows systems, FALSE is always returned for files opened for excluseve use like

pagefile.sys.

function WFileExists(const FileName: KOLWideString): Boolean;

Returns True, if given file exists.

Note (by Dod): It is not documented in a help for GetFileAttributes, but it seems that under NT-

based Windows systems, FALSE is always returned for files opened for excluseve use like

pagefile.sys.

function FileSeek(Handle: THandle; const MoveTo: TStrmMove; MoveMethod: TMoveMethod
): TStrmSize;

Changes current position in file.

function FileRead(Handle: THandle; var Buffer; Count: DWord): DWord;

Reads bytes from current position in file to buffer. Returns number of read bytes.

function File2Str(Handle: THandle): AnsiString;

Reads file from current position to the end and returns result as ansi string.

function File2WStr(Handle: THandle): KOLWideString;

Reads UNICODE file from current position to the end and returns result as unicode string.

function FileWrite(Handle: THandle; const Buffer; Count: DWord): DWord;

Writes bytes from buffer to file from current position, extending its size if needed.

70 70

70

70

70

70

70

70

70

71

71

71

73

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Files and Folders

function FileEOF(Handle: THandle): Boolean;

Returns True, if EOF is achieved during read operations or last byte is overwritten or append

made to extend file during last write operation.

function FileFullPath(const FileName: KOLString): KOLString;

Returns full path name for given file. Validness of source FileName path is not checked at all.

function FileShortPath(const FileName: KOLString): KOLString;

Returns short path to the file or directory.

function FileIconSystemIdx(const Path: KOLString): Integer;

Returns index of the index of the system icon correspondent to the file or directory in system

icon image list.

function FileIconSysIdxOffline(const Path: KOLString): Integer;

The same as FileIconSystemIdx , but an icon is calculated for the file as it were offline (it is

possible to get an icon for file even if it is not existing, on base of its extension only).

function DirIconSysIdxOffline(const Path: KOLString): Integer;

The same as FileIconSysIdxOffline , but for a folder rather then for a file.

procedure LogFileOutput(const filepath, str: KOLString);

Debug function. Use it to append given string to the end of the given file.

function Str2File(Filename: PKOLChar; Str: PAnsiChar): Boolean;

Save null-terminated string to file directly. If file does not exists, it is created. If it exists, it is

overriden. If operation failed, FALSE is returned.

function WStr2File(Filename: PKOLChar; Str: PWideChar): Boolean;

Save null-terminated wide string to file directly. If file does not exists, it is created. If it exists, it is

overriden. If operation failed, FALSE is returned.

function StrSaveToFile(const Filename: KOLString; const Str: AnsiString): Boolean;

Saves a string to a file without any changes. If file does not exists, it is created. If it exists, it is

overriden. If operation failed, FALSE is returned.

function StrLoadFromFile(const Filename: KOLString): AnsiString;

Reads entire file and returns its content as a string. If operation failed, an empty strinng is

returned.

by Sergey Shishmintzev: it is possible to pass Filename = 'CON' to read input from redirected

console output.

function WStrSaveToFile(const Filename: KOLString; const Str: KOLWideString):
Boolean;

174

174

74

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Files and Folders

Saves a string to a file without any changes. If file does not exists, it is created. If it exists, it is

overriden. If operation failed, FALSE is returned.

function WStrLoadFromFile(const Filename: KOLString): KOLWideString;

Reads entire file and returns its content as a string. If operation failed, an empty strinng is

returned.

by Sergey Shishmintzev: it is possible to pass Filename = 'CON' to read input from redirected

console output.

function Mem2File(Filename: PKOLChar; Mem: Pointer; Len: Integer): Integer;

Saves memory block to a file (if file exists it is overriden, created new if not exists).

function File2Mem(Filename: PKOLChar; Mem: Pointer; MaxLen: Integer): Integer;

Loads file content to memory.

procedure FileTime(const Path: KOLString; CreateTime, LastAccessTime,
LastModifyTime: PFileTime); stdcall;

Returns file times without opening it.

function GetUniqueFilename(PathName: KOLString): KOLString;

If file given by PathName exists, modifies it to create unique filename in target folder and

returns it. Modification is performed by incrementing last number in name (if name part of file

does not represent a number, such number is generated and concatenated to it). E.g., if file

aaa.aaa is already exist, the function checks names aaa1.aaa, aaa2.aaa, ..., aaa10.aaa, etc. For

name abc123.ext, names abc124.ext, abc125.ext, etc. will be checked.

function FileTimeCompare(const FT1, FT2: TFileTime): Integer;

Compares time of file (createing, writing, accessing. Returns -1, 0, 1 if correspondantly FT1<FT2,

FT1=FT2, FT1>FT2.

function DirectoryExists(const Name: KOLString): Boolean;

Returns True if given directory (folder) exists.

function DiskPresent(const DrivePath: KOLString): Boolean;

Returns TRUE if the disk is present

function WDirectoryExists(const Name: KOLWideString): Boolean;

function CheckDirectoryContent(const Name: KOLString; SubDirsOnly: Boolean; const
Mask: KOLString): Boolean;

Returns TRUE if directory does not contain files (or directories only) satisfying given mask.

function DirectoryEmpty(const Name: KOLString): Boolean;

Returns True if given directory is not exists or empty.

75

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Files and Folders

function DirectoryHasSubdirs(const Path: KOLString): Boolean;

Returns TRUE if given directory exists and has subdirectories.

function DirectorySize(const Path: KOLString): I64 ;

Returns directory size in bytes as large 64 bit integer.

function GetStartDir: KOLString;

Returns path to directory where executable is located (regardless of current directory).

function ExePath: KOLString;

Returns the path to the exe-file (in case of dll hook, this is exe-file of the process in which

context dll hook function is called).

function ModulePath: KOLString;

Returns the path to the module (exe, dll) itself.

function ExcludeTrailingChar(const S: KOLString; C: KOLChar): KOLString;

If S is finished with character C, it is excluded.

function IncludeTrailingChar(const S: KOLString; C: KOLChar): KOLString;

If S is not finished with character C, it is added.

function IncludeTrailingPathDelimiter(const S: KOLString): KOLString;

by Edward Aretino. Adds '\' to the end if it is not present.

function ExcludeTrailingPathDelimiter(const S: KOLString): KOLString;

by Edward Aretino. Removes '\' at the end if it is present.

function ExtractFileDrive(const Path: KOLString): KOLString;

Returns only drive part from exact path to a file or a directory. For network paths, returns a

computer name together with a following name of shared directory (like '\

\compname\shared\').

function ExtractFilePath(const Path: KOLString): KOLString;

Returns only path part from exact path to file.

function WExtractFilePath(const Path: KOLWideString): KOLWideString;

Returns only path part from exact path to file.

function IsNetworkPath(const Path: KOLString): Boolean;

Returns TRUE, if Path is starting from '\\'.

60

76

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Files and Folders

function ExtractFileName(const Path: KOLString): KOLString;

Extracts file name from exact path to file.

function ExtractFileNameWOext(const Path: KOLString): KOLString;

Extracts file name from path to file or from filename.

function ExtractFileExt(const Path: KOLString): KOLString;

Extracts extention from file name (returns it with dot '.' first)

function ReplaceExt(const Path, NewExt: KOLString): KOLString;

Returns Path to a file with extension replaced to a new extension. Pass a new extension started

with '.', e.g. '.txt'.

function ForceDirectories(Dir: KOLString): Boolean;

by Edward Aretino. Creates given directory if not present. All needed subdirectories are created

if necessary.

function CreateDir(const Dir: KOLString): Boolean;

by Edward Aretino. Creates given directory.

function ChangeFileExt(FileName: KOLString; const Extension: KOLString):
KOLString;

by Edward Aretino. Changes file extention.

function ReplaceFileExt(const Path, NewExt: KOLString): KOLString;

Returns a path with extension replaced to a given one.

function ExtractShortPathName(const Path: KOLString): KOLString;

function FilePathShortened(const Path: KOLString; MaxLen: Integer): KOLString;

Returns shortened file path to fit MaxLen characters.

function FilePathShortenPixels(const Path: KOLString; DC: HDC; MaxPixels:
Integer): KOLString;

Returns shortened file path to fit MaxPixels for a given DC. If you pass Canvas.Handle of any

control or bitmap object, ensure that font is valid for it (or call

TCanvas.RequiredState(FontValid) method before. If DC passed = 0, call is equivalent to call

FilePathShortened , and MaxPixels means in such case maximum number of characters.

function MinimizeName(const Path: KOLString; DC: HDC; MaxPixels: Integer):
KOLString;

Exactly the same as MinimizeName in FileCtrl.pas (VCL).

76

77

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Files and Folders

function GetSystemDir: KOLString;

Returns path to windows system directory.

function GetWindowsDir: KOLString;

Returns path to Windows directory.

function GetWorkDir: KOLString;

Returns path to application's working directory.

function GetTempDir: KOLString;

Returns path to default temp folder (directory to place temporary files).

function CreateTempFile(const DirPath, Prefix: KOLString): KOLString;

Returns path to just created temporary file.

function GetFileListStr(FPath, FMask: KOLString): KOLString;

List of files in string, separating each path from others with a character stored in FileOpSeparator

variables (#13 by default). E.g.: 'c:\tmp\unit1.dcu'#13'c:\tmp\unit1.~pa' (for use with

DeleteFile2Recycle ())

function DeleteFiles(const DirPath: KOLString): Boolean;

Deletes files by file mask (given with wildcards '*' and '?').

function DoFileOp(const FromList, ToList: KOLString; FileOp: UINT; Flags: Word;
Title: PKOLChar): Boolean;

By Unknown Mystic. FileOp can be: FO_MOVE, FO_COPY, FO_DELETE, FO_RENAME. Flags can be

a combination of values: FOF_MULTIDESTFILES, FOF_CONFIRMMOUSE, FOF_SILENT,

FOF_RENAMEONCOLLISION, FOF_NOCONFIRMATION, FOF_WANTMAPPINGHANDLE,

FOF_ALLOWUNDO, FOF_FILESONLY, FOF_SIMPLEPROGRESS, FOF_NOCONFIRMMKDIR,

FOF_NOERRORUI. Title used only with FOF_SIMPLEPROGRESS.

function DeleteFile2Recycle(const Filename: KOLString): Boolean;

Deletes file to recycle bin. This operation can be very slow, when called for a single file. To

delete group of files at once (fast), pass a list of paths to files to be deleted, separating each path

from others with a character stored in FileOpSeparator variable (by default #13, but in case

when OLD_COMPAT symbol added - ';'). E.g.: 'unit1.dcu'#13'unit1.~pa'

FALSE is returned only in case when at least one file was not deleted successfully.

Note, that files are deleted not to recycle bin, if wildcards are used or not fully qualified paths to

files.

function CopyMoveFiles(const FromList, ToList: KOLString; Move: Boolean): Boolean;

77

78

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Files and Folders

4.5 Working with the Registry

In contrast to VCL, where in the Registry.pas module the work with the registry goes through

objects, in KOL the main functionality for working with the registry is represented by a number

of functions-adapters to the corresponding API functions. (If I'm not mistaken, there is also a

volunteer-adapted TRegistry for KOL, but I use my own functions, and that's quite enough for

me). These low-level functions, like the file access functions, operate on a descriptor like

THandle, which is effectively an unsigned number.

A significant difference between the RegKeyXXXXX functions from working directly with the

Windows registry API functions is that an incorrect or erroneous access to nonexistent or

inaccessible registry keys, even in the absence of checks in the program for the success of the

call, leads to idle call skips without any consequences. That is, in case of unsuccessful opening of

the key, 0 is returned as a descriptor, and subsequent calls to other functions of this group with

such a descriptor are simply ignored (and if it is necessary to return something, default values

are returned, i.e. zeros and empty strings).

RegKeyOpenRead(k, s) - opens the registry key for reading;

RegKeyOpenWrite(k, s) - opens the key for writing;

RegKeyOpenCreate(k, s) - creates a key (if it has not been created yet) and opens it for writing;

RegKeyClose(r) - closes an open handle;

RegKeyDelete(r, s) - deletes the subkey with the given name;

RegKeyGetStr(r, s) - returns the value of a string value;

RegKeyGetStrEx(r, s) - the same as the previous function, but additionally understands values

of the REG_EXPAND_SZ type (i.e. system variables like% TEMP% are replaced by their values

from environment variables);

RegKeySetStr(r, s, s1) - writes a string value;

RegKeySetStrEx(r, s, s1, e) - the same as the previous function, but allows writing values of the

REG_EXPAND_SZ type;

RegKeyGetDw(r, s) - returns the value of a numeric value (or a value that can be interpreted as

numeric);

RegKeySetDw(r, s, i) - writes a numerical value;

RegKeyDeleteValue(r, s) - deletes the value;

RegKeyExists(r, s) - checks for the presence of a key;

RegKeyValExists(r,s) - checks for the presence of a value;

RegKeyValueSize(r, s) - returns the size of the value;

RegKeyGetBinary(r, s, buf, n) - reads a binary value into the buffer;

RegKeySetBinary(r, s, buf, n) - writes a binary value;

RegKeyGetDateTime(r, s) - reads a date / time value;

RegKeySetDateTime(r, s, d) - writes a value of the date / time type;

RegKeyGetValueTyp(r, s) - returns the type of the value;

79

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Working with the Registry

RegKeyGetValueNames(r, list) - lists the names of all values in the specified list of type PStrList;

RegKeyGetSubKeys(r, list) - lists all subkeys in the specified PStrList.

4.5.1 Registry functions - Syntax

function RegKeyOpenRead(Key: HKey; const SubKey: KOLString): HKey;

Opens registry key for read operations (including enumerating of subkeys). Pass either handle of

opened earlier key or one of constans HKEY_CLASSES_ROOT, HKEY_CURRENT_USER,

HKEY_LOCAL_MACHINE, HKEY_USERS as a first parameter. If not successful, 0 is returned.

function RegKeyOpenWrite(Key: HKey; const SubKey: KOLString): HKey;

Opens registry key for write operations (including adding new values or subkeys), as well as for

read operations too. See also RegKeyOpenRead .

function RegKeyOpenCreate(Key: HKey; const SubKey: KOLString): HKey;

Creates and opens key.

function RegKeyGetStr(Key: HKey; const ValueName: KOLString): KOLString;

Reads key, which must have type REG_SZ (null-terminated string). If not successful, empty string

is returned. This function as well as all other registry manipulation functions, does nothing, if Key

passed is 0 (without producing any error).

function RegKeyGetStrEx(Key: HKey; const ValueName: KOLString; ExpandEnvVars:
Boolean): KOLString;

Like RegKeyGetStr , but accepts REG_EXPAND_SZ type, expanding all environment variables in

resulting string.

Code provided by neuron, e-mailto:neuron@hollowtube.mine.nu

function RegKeyGetDw(Key: HKey; const ValueName: KOLString): DWORD;

Reads key value, which must have type REG_DWORD. If ValueName passed is '' (empty string),

unnamed (default) value is reading. If not successful, 0 is returned.

function RegKeySetStr(Key: HKey; const ValueName: KOLString; const Value: KOLString
): Boolean;

Writes new key value as null-terminated string (type REG_SZ). If not successful, returns False.

function RegKeySetStrEx(Key: HKey; const ValueName: KOLString; const Value:
KOLString; expand: Boolean): Boolean;

Writes new key value as REG_SZ or REG_EXPAND_SZ. - by neuron, e-

mailto:neuron@hollowtube.mine.nu

function RegKeySetDw(Key: HKey; const ValueName: KOLString; Value: DWORD):

79

79

mailto:e-mailto:neuron@hollowtube.mine.nu
mailto:e-mailto:neuron@hollowtube.mine.nu
mailto:e-mailto:neuron@hollowtube.mine.nu

80

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Working with the Registry

Boolean;

Writes new key value as dword (with type REG_DWORD). Returns False, if not successful.

procedure RegKeyClose(Key: HKey);

Closes key, opened using RegKeyOpenRead or RegKeyOpenWrite . (But does nothing, if

Key passed is 0).

function RegKeyDelete(Key: HKey; const SubKey: KOLString): Boolean;

Deletes key. Does nothing if key passed is 0 (returns FALSE).

function RegKeyDeleteValue(Key: HKey; const SubKey: KOLString): Boolean;

Deletes value. - by neuron, e-mailto:neuron@hollowtube.mine.nu

function RegKeyExists(Key: HKey; const SubKey: KOLString): Boolean;

Returns TRUE, if given subkey exists under given Key.

function RegKeyValExists(Key: HKey; const ValueName: KOLString): Boolean;

Returns TRUE, if given value exists under the Key.

function RegKeyValueSize(Key: HKey; const ValueName: KOLString): Integer;

Returns a size of value. This is a size of buffer needed to store registry key value. For string

value, size returned is equal to a length of string plus 1 for terminated null character.

function RegKeyGetBinary(Key: HKey; const ValueName: KOLString; var Buffer; Count:
Integer): Integer;

Reads binary data from a registry, writing it to the Buffer. It is supposed that size of Buffer

provided is at least Count bytes. Returned value is actul count of bytes read from the registry

and written to the Buffer.

This function can be used to get data of any type from the registry, not only REG_BINARY.

function RegKeySetBinary(Key: HKey; const ValueName: KOLString; const Buffer;
Count: Integer): Boolean;

Stores binary data in the registry.

function RegKeyGetDateTime(Key: HKey; const ValueName: KOLString): TDateTime;

Returns datetime variable stored in registry in binary format.

function RegKeySetDateTime(Key: HKey; const ValueName: KOLString; DateTime:
TDateTime): Boolean;

Stores DateTime variable in the registry.

79 79

mailto:e-mailto:neuron@hollowtube.mine.nu

81

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Working with the Registry

function RegKeyGetSubKeys(const Key: HKEY; List: PKOLStrList): Boolean;

The function enumerates subkeys of the specified open registry key. True is returned, if

successful.

function RegKeyGetValueNames(const Key: HKEY; List: PKOLStrList): Boolean;

The function enumerates value names of the specified open registry key. True is returned, if

successful.

function RegKeyGetValueTyp(const Key: HKEY; const ValueName: KOLString): DWORD;

The function receives the type of data stored in the specified value.

If the function fails, the return value is the Key value.

If the function succeeds, the return value return will be one of the following:

REG_BINARY , REG_DWORD, REG_DWORD_LITTLE_ENDIAN, REG_DWORD_BIG_ENDIAN,

REG_EXPAND_SZ, REG_LINK , REG_MULTI_SZ, REG_NONE, REG_RESOURCE_LIST, REG_SZ

4.6 Working with Windows

System Functions and Working with Windows

This set of functions rather expands the API than just an adapter, and can be used for a variety of

purposes (interaction between windows, including between different applications, identifying

any characteristics of the operating system).

GetWindowChild(wnd, kind) - allows you to get a child window of this window with the

specified characteristics (owning the keyboard input focus, carriage, seizing the mouse in

exclusive use or having an activated menu);

GetFocusedChild(wnd) - a subspecies of the previous function, interested only in windows in

the input focus;

FindWindowByThreadID(t) - Finds a window belonging to the specified flow of execution of

instructions;

Stroke2Window(wnd, s) - sends a line to the window in focus, as if the user had typed this line

on the keyboard;

Stroke2WindowEx(wnd, s, wait) - the same as the previous function, but allows you to "press"

including control keys on the keyboard, such as arrows, page turning, etc .;

WindowsShutdown(s, force, reboot) - stops the session / shuts down / reboots the computer;

WinVer - returns the Windows version (the TWindowsVersion return type is defined as an

ordered list of constants wv31, wv95, wv98, vwME *, wvNT, wvY2K, wvXP, wvVista, wvWin7);

IsWinVer(wv) - checks if the Windows version is one of the specified wv;

ExecuteWait(AppPath, CmdLine, DfltDirectory, Show, TimeOut, ProcID) - launches for

execution and waits for completion (specified period of time) the specified application;

82

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Working with Windows

ExecuteIORedirect(AppPath, CmdLine, DfltDirectory, Show, ProcID, InPipe, OutPipeWr,

OutPipeRd) - launches a console application, redirecting its input / output to the specified

objects of the pipe type (pipe, literally, a kind of file streams in Windows);

ExecuteConsoleAppIORedirect(const AppPath, CmdLine, DfltDirectory, Show, InStr,

OutStr, WaitTimeout) - the same as the previous function, but after the application is launched,

the string InStr is "fed" to it, and upon completion, the contents of its console in the OutStr line

are read at the output;

GetDesktopRect - returns a rectangle on the screen that is free for application windows

(excluding, for example, the Windows taskbar, and other panels at the edges of the screen);

GetWorkArea - the same as the previous function, but the result is obtained in a slightly

different way, through SystemParametersInfo. For various purposes, it is more correct to use

either this function or the previous one. For Windows 7, the GetDesktopRect function is always

redirected to the GetworkArea function, for example.

Perhaps, in the same section, it is worth adding a couple of functions from KOL.pas, which can

be used to control the uniqueness of a running instance of an application (it may be necessary

that an application does not allow the user to launch itself repeatedly):

JustOne(wnd, s) - returns true if only the application is launched in a single instance (if at the

moment of application launch it is found that such is already among those running, false is

returned);

JustOneNotify(wnd, s, onanother) - similar to the previous one, but in addition sets an event

handler OnAnotherInstance, which is triggered in the first running application, and when the

second is launched, when triggered, the event handler receives as a parameter the command

line from which the second (and other) instance (s) of the application was launched. For example,

if, when making a text editor at the beginning of work, when the main form is still invisible, make

a call:

 if not JustOneNotify (MainForm.Handle, 'My.Super.Puper.Text.Editor',
OnAnotherMyEditor) then
 MainForm.Close;

then when you restart it, the launch will not take place (the application will not even appear on

the screen), and the handler in the first instance of the application will receive information about

the command line of the second instance, and can load the requested text into a new tab, for

example.

4.6.1 Working with Windows - Syntax

function ComputerName: KOLString;

Returns computer name.

function UserName: KOLString;

Returns user name (login).

function ListUsers: PStrList;

83

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Working with Windows

Returns a list of users currently logined to a system. Don't forget to free it when it is not more

necessary!

function IsUserAdmin(s: KOLString): TUserRights;

Returns TRUE if a user (given by s) has administrator rights on a computer.

type TWindowChildKind =(wcActive, wcFocus, wcCapture, wcMenuOwner, wcMoveSize,
wcCaret);

Type of window child kind. Used in function GetWindowChild .

function GetWindowChild(Wnd: HWnd; Kind: TWindowChildKind): HWnd;

Returns child of given top-level window, having given characteristics. For example, it is possible

to get know for foreground window, which of its child window has focus. This function does not

work in old Windows 95 (returns Wnd in that case). But for Windows 98, Windows NT/2000 this

function works fine. To obtain focused child of the window, use GetFocusedWindow, which is

independant from Windows version.

function GetFocusedChild(Wnd: HWnd): HWnd;

Returns focused child of given window (which should be foreground and active, certainly). 0 is

returned either if Wnd is not active or Wnd has no focused child window.

function ForceSetForegroundWindow: Integer;

Calls AllowSetForegroundWindow (if available) and changes

SPI_SETFOREGROUNDLOCKTIMEOUT to 0, returning previus value got by

SPI_GETFOREGROUNDLOCKTIMEOUT. If failed, -1 is returned

var TimeWaitFocus: Byte = 10;

Delay time while passing keys using Stroke2Window and Stroke2WindowEx .

function Stroke2Window(Wnd: HWnd; const S: AnsiString): Boolean;

Posts characters from string S to those child window of Wnd, which has focus now (top-level

window Wnd must be foreground, and have focused edit-aware control to receive the stroke).

This function allows only to post typeable characters (including such special symbols as #13

(Enter), #9 (Tab), #8 (BackSpace), etc.

See also function Stroke2WindowEx , which allows to post any key down and up events,

simulating keyboard for given (automated) application.

function Stroke2WindowEx(Wnd: HWnd; const S: AnsiString; Wait: Boolean): Boolean;

In addition to function Stroke2Window , this one can send special keys to given window,

including functional keys and navigation keys. To post special key to target window, place a

combination of names of such key together with keys, which should be passed simultaneously,

between square or figure brackets. For example, [Ctrl F1], [Alt Shift Home], [Ctrl E]. For letters

and usual characters, it is not necessary to simulate pressing it with determining all Shift

combinations and it is sufficient to pass characters as is. (E.g., not '[Shift 1]', but '!').

83

83

83 83

83

83

84

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Working with Windows

function SendCommands2Wnd(WndHandle: Hwnd; const s: KOLString): Boolean;

Sends commands to a window "as is" (e.g. #13 for Enter). Can pass up to 4K key commands at a

time vewry fast.

function FindWindowByThreadID(ThreadID: DWORD): HWnd;

Searches for window, belonging to a given thread.

function DesktopPixelFormat: TPixelFormat;

Returns the pixel format correspondent to current desktop color resolution. Use this function to

decide which format to use for converting bitmap, planned to draw transparently using

TBitmap.DrawTransparent or TBitmap.StretchDrawTransparent methods.

function ListMonitors: TRectsArray;

Lists all monitors in system, returns an array of rectangles with its coordinates and sizes.

function MonitorAt(X, Y: Integer): TRect;

Returns monitor where given point (X,Y) is located. If not found, main monitor bounds is

returned.

function GetDesktopRect: TRect;

Returns rectangle of screen, free of taskbar and other similar app-bars, which reduces size of

available desktop when created.

function GetWorkArea: TRect;

The same as GetDesktopRect , but obtained calling SystemParametersInfo.

function ExecuteWait(const AppPath, CmdLine, DfltDirectory: KOLString; Show: DWORD;
TimeOut: DWORD; ProcID: PDWORD): Boolean;

Allows to execute an application and wait when it is finished. Pass INFINITE constant as TimeOut,

if You sure that application is finished anyway. If another value passed as a TimeOut (in

milliseconds), and application was not finished for that time, ExecuteWait is returning FALSE, and

if ProcID is not nil, than ProcID^ contains started process handle (it can be used to wait it more,

or to terminate it using TerminateProcess API function).

Launching application can be console or GUI - it does not matter. Pass SW_SHOW, SW_HIDE or

other SW_XXX constant as Show parameter as appropriate.

True is returned only in case when application specified was launched successfully and finished

for TimeOut specified. Otherwise, check ProcID^ variable: if it is 0, process could not be

launched (and it is possible to get information about error using GetLastError API function in a

such case). You can freely pass nil in place of ProcID parameter, but this is acually correct only

when TimeOut is INFINITE.

function ExecuteIORedirect(const AppPath, CmdLine, DfltDirectory: KOLString; Show:
DWORD; ProcID: PDWORD; InPipe, OutPipeWr, OutPipeRd: PHandle): Boolean;

84

85

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Working with Windows

Executes an application with its console input and output redirection. Terminating of the

application is not waiting, but if ProcID pointer is defined, it receives process Id launched, so it is

possible to call WaitForSingleObject for it. InPipe is a pointer to THandle variable which receives

a handle to input pipe of the console redirected. The same is for OutPipeWr and OutPipeRd, but

for output of the console redirected. Before reading from OutPipeRd^, first close OutPipeWr^.

If you run simple console application, for which you want to read results after its termination,

you can use ExecuteConsoleAppIORedirect instead.

Notes: if your application is not console and it does not create console using AllocConsole, this

function will fail to redirect input-output.

function ExecuteConsoleAppIORedirect(const AppPath, CmdLine, DfltDirectory:
KOLString; Show: DWORD; const InStr: KOLString; var OutStr: KOLString; WaitTimeout:
DWORD): Boolean;

Executes an application, redirecting its console input and output. After redirecting input and

output and launching the application, content of InStr is written to input stream of the

application, then the application is waiting for its termination (WaitTimeout milliseconds or

INFINITE, as passed) and console output of the application is read to OutStr. TRUE is returned

only in case, when all these tasks are completed successfully.

Notes: if your application is not console and it does not create console using AllocConsole, this

function will fail to redirect input-output.

function WindowsShutdown(const Machine: KOLString; Force, Reboot: Boolean):
Boolean;

Shut down of Windows NT. Pass Machine = '' to shutdown this PC. Pass Reboot = True to reboot

immediatelly after shut down.

function WindowsLogoff(Force: Boolean): Boolean;

Logoff of Windows.

type TWindowsVersion =(wv31, wv95, wv98, wvME, wvNT, wvY2K, wvXP, wvServer2003,
wvVista, wvSeven);

Windows versions constants.

type TWindowsVersions = Set of TWindowsVersion ;

Set of Windows version (e.g. to define a range of versions supported by the application).

function WinVer: TWindowsVersion ;

Returns Windows version.

function IsWinVer(Ver: TWindowsVersions): Boolean;

Returns True if Windows version is in given range of values.

function ParamStr(Idx: Integer): KOLString;

Returns command-line parameter by index. This function supersides standard ParamStr function.

85

85

85

85

86

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Working with Windows

function ParamCount: Integer;

Returns number of parameters in command line.

type TOnAnotherInstance = procedure(const CmdLine: KOLString) of object;

Event type to use in JustOneNotify function.

function JustOne(Wnd: PControl; const Identifier: KOLString): Boolean;

Returns True, if this is a first instance. For all other instances (application is already running), False

is returned.

function JustOneNotify(Wnd: PControl; const Identifier: KOLString; const

aOnAnotherInstance: TOnAnotherInstance): Boolean;

Returns True, if this is a first instance. For all other instances (application is already running), False

is returned. If handler aOnAnotherInstance passed, it is called (in first instance) every time when

another instance of an application is started, receiving command line used to run it.

4.7 Messageboxes

Several simple functions have also been added in KOL to display a simple message box. These

are:

MsgBox, MsgOK, ShowMsg, ShowMsgCentered, ShowMessage, SysErrorMessage

In the the additional module KOLadd.pas, three additional features have been added:

ShowQuestion, ShowQuestionEx, ShowMsgModal.

A feature was also provided to sound a system beep at a desired frequency and for a selected

time: SpeakerBeep

4.7.1 Messageboxes - Syntax

function MsgBox(const S: KOLString; Flags: DWORD): DWORD;

Displays message box with the same title as Applet.Caption. If applet is not running, and Applet

global variable is not assigned, caption 'Error' is displayed (but actually this is not an error - the

system does so, if nil is passed as a title).

Returns ID_... result (correspondently to flags passed (MB_OK, MBYESNO, etc. -> ID_OK, ID_YES,

ID_NO, etc.)

procedure MsgOK(const S: KOLString);

Displays message box with the same title as Applet.Caption (or 'Error', if Applet is not running).

function ShowMsg(const S: KOLString; Flags: DWORD): DWORD;

86

86

87

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Messageboxes

Displays message box like MsgBox , but uses Applet.Handle as a parent (so the message has

no button on a task bar).

function ShowMsgCentered(Ctl: PControl; const S: KOLString; Flags: DWORD): DWORD;

Displays message box like ShowMsg , but centers it on a control (or form) given by Ctl

parameter.

procedure ShowMessage(const S: KOLString);

Like ShowMsg , but has only styles MB_OK and MB_SETFOREGROUND.

function SysErrorMessage(ErrorCode: Integer): KOLString;

Creates and returns a string containing formatted system error message. It is possible then to

display this message or write it to a log file, e.g.:
 ShowMsg (SysErrorMessage(GetLastError));

function ShowQuestion(const S: KOLString; Answers: KOLString): Integer;

Modal dialog like ShowMsgModal. It is based on KOL form, so it can be called also out of

message loop, e.g. after finishing the application. Also, this function *must* be used in MDI

applications in place of any dialog functions, based on MessageBox.

The the second parameter should be empty AnsiString or several possible answers separated by

'/', e.g.: 'Yes/No/Cancel'. Result is a number answered, starting from 1. For example, if 'Cancel'

was pressed, 3 will be returned.

User can also press ESCAPE key, or close modal dialog. In such case -1 is returned.

function ShowQuestionEx(S: KOLString; Answers: KOLString; CallBack: TOnEvent):
Integer;

Like ShowQuestion, but with CallBack function, called just before showing the dialog.

procedure ShowMsgModal(const S: KOLString);

This message function can be used out of a message loop (e.g., after finishing the application). It

is always modal.

Actually, a form with word-wrap label (decorated as borderless edit box with btnFace color) and

with OK button is created and shown modal. When a dialog is called from outside message loop,

caption 'Information' is always displayed.

Dialog form is automatically resized vertically to fit message text (but until screen height is

achieved) and shown always centered on screen. The width is fixed (400 pixels).

Do not use this function outside the message loop for case, when the Applet variable is not used

in an application.

procedure SpeakerBeep(Freq: Word; Duration: DWORD);

On Windows NT, calls Windows.Beep. On Windows 9x, produces beep on speaker of desired

frequency during given duration time (in milliseconds).

86

86

86

86

88

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Messageboxes

4.8 Clipboard Operations

KOL includes some functions for working with text on the clipboard. Deze functies zijn:

ClipboardHasText, Clipboard2Text, Clipboard2WText, Text2Clipboard, WText2Clipboard

A sample program of working with the clipboard in KOL can be found here:

https://www.artwerp.be/MultiClipboard/setup_multiclipboard.exe

Because the MultiClipBoard program is based on code by another author, the reader of this

User Guide can register the program for free with the following info:

Hello KOL User Guide Reader

Your license for MultiClipBoard is:

###License###77025992687008F673A655D601670CD7KOL User Guide Reader

Copy the license string with CTRL+C to the clipboard to register MultiClipBoard

Best regards
Carl Peeraer - Artwerp.be

Further in this manual, clipboard functions are also described with graphics.

4.8.1 Clipboard Operations - Syntax

function ClipboardHasText: Boolean;

Returns true, if the clipboard contain text to paste from.

function Clipboard2Text: AnsiString;

If clipboard contains text, this function returns it for You.

function Clipboard2WText: KOLWideString;

If clipboard contains text, this function returns it for You (as Unicode string).

function Text2Clipboard(const S: AnsiString): Boolean;

Puts given string to a clipboard.

function WText2Clipboard(const WS: KOLWideString): Boolean;

Puts given Unicode string to a clipboard.

https://www.artwerp.be/MultiClipboard/setup_multiclipboard.exe

89

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Arithmetics, geometry, utilities

4.9 Arithmetics, geometry, utilities

Most of these functions are found in the units: KolMath.pas, CplxMath.pas and Err.pas. Check

out these units for more information.

You can download KOL + MCK and these units from this link:

https://www.artwerp.be/kol/kol-mck-master_3.23.zip.

4.9.1 Arithmetics, geometry, utilities - Syntax

function MulDiv(A, B, C: Integer): Integer;

Returns A * B div C. Small and fast.

function MakeRect(Left, Top, Right, Bottom: Integer): TRect; stdcall;

Use it instead of VCL Rect function

function RectsEqual(const R1, R2: TRect): Boolean;

Returns True if rectangles R1 and R2 have the same bounds

function RectsIntersected(const R1, R2: TRect): Boolean;

Returns TRUE if rectangles R1 and R2 have at least one common point. Note, that right and

bottom bounds of rectangles are not their part, so, if such points are lying on that bounds, FALSE

is returned.

function PointInRect(const P: TPoint; const R: TRect): Boolean;

Returns True if point P is located in rectangle R (including left and top bounds but without right

and bottom bounds of the rectangle).

function OffsetPoint(const T: TPoint; dX, dY: Integer): TPoint;

function OffsetSmallPoint(const T: TSmallPoint; dX, dY: SmallInt): TSmallPoint;

function Point2SmallPoint(const T: TPoint): TSmallPoint;

function SmallPoint2Point(const T: TSmallPoint): TPoint;

function MakePoint(X, Y: Integer): TPoint;

Use instead of VCL function Point

function MakeSmallPoint(X, Y: Integer): TSmallPoint;

Use to construct TSmallPoint

function MakeFlags(FlgSet: PDWORD; FlgArray: array of Integer): Integer;

function MakeDateTimeRange(D1, D2: TDateTime): TDateTimeRange;

Returns TDateTimeRange from two TDateTime bounds.

procedure Swap(var X, Y: Integer);

https://www.artwerp.be/kol/kol-mck-master_3.23.zip

90

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Arithmetics, geometry, utilities

exchanging values

function Min(X, Y: Integer): Integer;

minimum of two integers

function Max(X, Y: Integer): Integer;

maximum of two integers

function Abs(X: Integer): Integer;

absolute value

function Sgn(X: Integer): Integer;

sign of X: if X < 0, -1 is returned, if > 0, then +1, otherwise 0.

function iSqrt(X: Integer): Integer;

square root

function iCbrt(X: DWORD): Integer;

cubic root

91

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Arithmetics, geometry, utilities

4.10 Sorting Data

Data sorting: quicksort implementation

This part contains implementation of 'quick sort' algorithm, based on following code:

· TQSort by Mike Junkin 10/19/95.

· DoQSort routine adapted from Peter Szymiczek's QSort procedure which was presented in

issue#8 of The Unofficial Delphi Newsletter.

· TQSort changed by Vladimir Kladov (Mr.Bonanzas) to allow 32-bit sorting (of big arrays with

more than 64K elements).

· Finally, this sort procedure is adapted to XCL (and then to KOL) requirements (no references

to SysUtils, Classes etc. TQSort object is transferred to a single procedure call and DoQSort

method is renamed to SortData - which is a regular procedure now).

The most efficient method for performing sorting is the so-called Quick Sort algorithm. The KOL

library has an optimized (and assembled) version of this function called SortData. (And with

version 3.00, the SortArray function was added, which provides slightly better performance for

arrays and lists of 4-byte values, such as Integer numbers or in-memory string pointers.)

To use the SortData function, you need to set 4 parameters: an object for sorting (usually, it is

some kind of list or array), the number of elements in the list, as well as a function for comparing

two elements and a procedure for exchanging two elements of the array being sorted.

As an example of using the SortData and SortArray functions, it is recommended to study the

implementation of the SortIntegerArray and SortDwordArray functions, which are also

included in the library.

4.10.1 Sorting Data - Syntax

procedure SortData(const Data: Pointer; const uNElem: Dword; const CompareFun:
TCompareEvent; const SwapProc: TSwapEvent);

Call it to sort any array of data of any kind, passing total number of items in an array and two

defined (regular) function and procedure to perform custom compare and swap operations.

First procedure parameter is to pass it to callback function CompareFun and procedure

SwapProc. Items are enumerated from 0 to uNElem-1.

procedure SortArray(const Data: Pointer; const uNElem: Dword; const CompareFun:
TCompareArrayEvent);

Like SortData , but faster and allows to sort only contigous arrays of dwords (or integers or

pointers occupying for 4 bytes for each item.

procedure SwapListItems(const L: Pointer; const e1, e2: DWORD);

91

92

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Sorting Data

Use this function as the last parameter for SortData call when a PList object is sorting.

SwapListItems just exchanges two items of the list.

procedure SortIntegerArray(var A: array of Integer);

procedure to sort array of integers.

procedure SortDwordArray(var A: array of DWORD);

Procedure to sort array of unsigned 32-bit integers.

4.11 Object Type Hierarchy

4.11.1 _TObj and TObj objects

At this point, I can end my review of sets of simple functions, and move on to describing the

object part of KOL. Objects in KOL take advantage of almost all the basic delights of object

programming, namely encapsulation, inheritance, and polymorphism, although sometimes

somewhat limited.

For example, as I said before, inheritance should not be overused when building an object

hierarchy, since each object type (or class) will require its own virtual method table in memory.

Therefore, I took great care in building my hierarchy of objects.

The base object type for all objects in KOL is TObj. For some reason, later (in version 0.93 of

08/25/2001) the _TObj object type was introduced, from which TObj is inherited. The main

reason was that with each modification of the TObj type, the pointer to the table of virtual

methods vmt was shifted. Creation of a semi-dummy "ancestor" for TObj ensured the constancy

of the vmt field in the object structure - at offset 0, and made it possible to create the

InstanceSize function that returns the size of the field structure in memory for any object

inherited from TObj. In addition, for each call to vmt, the code is shorter by 1 byte in this case.

The author of this modification is Vyacheslav Gavrik, for which he is undoubtedly grateful.

91

93

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Object Type Hierarchy

So, what is TObj (I will consider its methods together with the methods of its ancestor _TObj).

To some extent, this is an analogue of the TObject class in the VCL, and at the same time, it can

also be considered an analogue of the TComponent. Almost all other object types, with a few

exceptions, are derived directly from TObj. The _TObj object defines the only (first) virtual Init

method, and there is one more function VmtAddr, and this is where the list of its methods ends

(it has no fields of its own). Since _TObj is a helper object whose only purpose is to make code

smaller, there is no need to directly use it in your program.

The TObj object is already more complicated, the virtual destructor Destroy already appears in

it (but you should always call the Free method), it contains the fAutoFree list (of the PList type,

by the way, the presence of a reference to PList in TObj already means that at least some

methods of the object type TList will be included in the code of any KOL program, but I

decided to go for it, since it is difficult to do anything without lists at all, i.e. the list will still get

into the code of even a minimal program). fAutoFree is a list of objects that will be automatically

destroyed along with the data, there are methods for adding objects for self-destruction

(Add2AutoFree and Add2AutoFreeEx) when the destructor is executed. The TObj type (and

therefore all object types in KOL) also has an OnDestroy event.

There is a Tag field (yes, in KOL it is defined at the lowest level of the hierarchy, i.e. any object in

KOL has this field a priori).

There is even an object usage counter, which allows you to prevent the destruction of the object

while someone else needs it: calls to RefInc increase the counter, and for an object with a

nonzero counter, calling the destructor will not lead to any consequences (except for marking

that the destructor was called). When decreasing the usage counter by calling RefDec to zero, it

is checked whether the destructor was called, and if it was, the object is destroyed, this time

finally. The RefCount field is available for analysis from the program (the least significant bit of

this field is used as an indication that the destructor was called, all the others are a counter that

increases by 2 with each call to RefInc, and decreases by 2 with each RefDec).

100

94

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Object Type Hierarchy

In KOL itself, the RefInc and RefDec methods are applied “just in case” when processing

messages for a visual object (“just in case” is that the object can be destroyed while any window

message is being processed for it, and then it would be almost inevitable crash of the

application). In fact, the RefInc methods can be used in multithreaded applications to protect

temporary objects managed from different threads for a period of active use in some part of the

code.

Sometimes it becomes necessary to "simultaneously" destroy an object and zero (assign nil) to

the pointer to this object. The VCL has a function for this, in KOL the function is called

Free_And_Nil for the same purpose. Moreover, in this function, the object pointer variable is

first reset to zero, and only then the object is destroyed (by calling the Free method). Of course,

this is almost equivalent to having the object first destroyed and then assigned nil to a pointer

variable. But in a multithreaded application, the difference can be felt. It is enough to imagine a

situation in which the object was destroyed (or began to decay, but the operation has not been

completed yet), and the pointer is still not equal to nil, and at that moment the threads switched,

and some operations with the same object through the same pointer. Even in the case of a

single-threaded application, the fact that some global pointer continues to point to a non-

existent object, or to an object, for which the destruction operation has already begun, presents

a certain danger. So the need for the Free_And_Nil function is obvious.

In addition to the listed properties, TObj has a string field named Name, added by popular

demand. But this field is optional, and the compiler knows that such a field exists only when the

Use_Names conditional compilation symbol is included in the project options. In this case, all

named objects are remembered in the list of the parent object, and can be found by calling its

FindObj (s) method.

The TObj object type is not intended to create its own instances, it was designed precisely as an

ancestor for all inherited object types. Non-visual objects should be inherited from it, which must

have a destructor, or can be passed as a parameter wherever a variable of type PObj is

required. In all other cases, when the functionality of the TObj object is not required, you can

create your own objects that do not derive from TObj. But the product of descendants from

TObj is actually quite inexpensive, so my advice is to inherit all simple objects from TObj in

general.

4.11.1.1 TObj - Syntax

TObj(unit KOL.pas) _TObj
TObj = object(_TObj)

Prototype for all objects of KOL. All its methods are important to implement objects in a manner

similar to Delphi TObject class.

TObj properties

property RefCount: Integer;

39

95

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Object Type Hierarchy

property Free: Integer;

Before calling destructor of object, checks if passed pointer is not nil - similar what is done in

VCL for TObject. It is ALWAYS recommended to use Free instead of Destroy - see also

comments to RefInc , RefDec .

property Tag: DWORD;

Custom data field.

TObj methods

destructor Destroy; virtual;

Disposes memory, allocated to an object. Does not release huge strings, dynamic arrays and so

on. Such memory should be freeing in overridden destructor.

procedure Final;

It is called in destructor to perform OnDestroy event call and to released objects, added to

fAutoFree list.

procedure RefInc;

See comments below: RefDec .

function RefDec: Integer;

Decrements reference count. If it is becoming <0, and Free method was already called,

object is (self-) destroyed. Otherwise, Free method does not destroy object, but only sets flag

"Free was called".

Use RefInc..RefDec to provide a block of code, where object can not be destroyed by call of

Free method. This makes code more safe from intersecting flows of processing, where some

code want to destroy object, but others suppose that it is yet existing.

If You want to release object at the end of block RefInc..RefDec, do it immediately BEFORE call

of last RefDec (to avoid situation, when object is released in result of RefDec, and attempt to

destroy it follow leads to AV exception).

Actually, this "function" is a procedure and does not return any sensible value. It is declared as a

function for internal needs (to avoid creating separate code for Free method)

function InstanceSize: Integer;

Returns a size of object instance.

constructor Create;

Constructor. Do not call it. Instead, use New<objectname> function call for certain object, e.g.,

NewLabel(AParent, 'caption');

95

95 95

96

96

95

95

95

95

95

95

346

96

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Object Type Hierarchy

function AncestorOfObject(Obj: Pointer): Boolean;

Is intended to replace 'is' operator, which is not applicable to objects.

function VmtAddr: Pointer;

Returns addres of virtual methods table of object.

procedure Add2AutoFree(Obj: PObj);

Adds an object to the list of objects, destroyed automatically when the object is destroyed. Do

not add here child controls of the TControl (these are destroyed by another way). Only non-

control objects, which are not destroyed automatically, should be added here.

procedure Add2AutoFreeEx(Proc: TObjectMethod);

Adds an event handler to the list of events, called in destructor. This method is mainly for

internal use, and allows to auto-destroy VCL components, located on KOL form at design time

(in MCK project).

procedure RemoveFromAutoFree(Obj: PObj);

Removes an object from auto-free list

procedure RemoveFromAutoFreeEx(Proc: TObjectMethod);

Removes a procedure from auto-free list

TObj events

property OnDestroy: TOnEvent;

This event is provided for any KOL object, so You can provide your own OnDestroy event for it.

TObj fields

fAutoFree: PList;

Is called from a constructor to initialize created object instance filling its fields with 0. Can be

overridden in descendant objects to add another initialization code there. (Main reason of

intending is what constructors can not be virtual in poor objects).

fTag: DWORD;

Custom data.

4.11.2 Object inheritance from TObj

I'll make a point here: unlike classes, here you have to free all the resources

belonging to the object yourself. Namely: all fields that are objects and created

for the lifetime of this particular object (call of the Free method). All dynamic

203

97

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Object Type Hierarchy

chunks of memory allocated by AllocMemory or GetMem (call to the FreeMem

function). All dynamic arrays (call SetLength with size parameter equal to 0). All

variants (assignment Unassigned). All ANSI strings (empty string assignment). Pay

attention to the last point (s): this is the most common source of memory leaks

when working with simple objects in KOL projects.

If you inherit your object type directly from the TObj type, then there is no special need to call

the inherited method in your implementation of the Init method (this method does nothing in

the TObj object itself).

And even if there is a constructing function, it is desirable to transfer that part of the object

initialization that does not depend on parameters into the Init method. And remember that

when working with simple objects, the word override in your definition of the Init method

should not be used: instead, you should use the word virtual again (see example on the right).

If you inherit your object type directly from the

TObj type, then there is no special need to call the

inherited method in your implementation of the

Init method (this method does nothing in the TObj

object itself).

And even if there is a constructing function, it is

desirable to transfer that part of the object

initialization that does not depend on parameters

into the Init method. And remember that when

working with simple objects, the word override in

your definition of the Init method should not be

used: instead, you should use the word virtual

again (see example on the right).

type
 PmyType = ̂ TmyType;
 TmyType = object (Tobj)
 Protected
 MyStrProp: string;
 MyStrList: PStrList;
 ...
 procedure Init; virtual;
 destructor Destroy;
virtual;
 ...

// implementation:
procedure TmyType.Init;
begin
// inherited; - not needed
 MyStrProp: = 'OK';
 MyStrList: = NewStrList;
end;

Likewise, for the Destroy destructor: write virtual

instead of override. But it is necessary to call

inherited, and usually before exiting the

destructor, when all its actions to release

unnecessary resources have already been

completed. Sometimes some actions can be

performed after calling the inherited destructor,

but in no case should this be a call to the fields of

a remote object. Immediately after returning from

inherited, the object no longer exists in memory,

and an attempt to access them can lead to fatal

consequences for the program.

destructor TmyType.Destroy;
begin
 MyStrProp: = '';
 MyStrList.Free;
inherited; //
needednecessarily
end;

98

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Object Type Hierarchy

4.11.3 Event Handlers

Any object, except for methods, fields and properties, can also have some "events". An event is

(for an object) a field of type a pointer to a function, procedure, or method. (Events outside

objects may also exist, then it is just a global variable of the type of a pointer to a procedure,

function or method). Most often, events are declared as properties (which allows you to work

with them using a consistent syntax, regardless of whether assigning a handler to an event

requires a special method call, or a pointer can be assigned as a regular field).

Most events are method pointers, i.e. their type is declared as procedure ... of object or function

... of object. For programmers, this means that this field is not just a pointer that stores the

address of a procedure that will be called when an "event" occurs, but contains two pointers

(occupying 8 bytes in memory): one points to an instance of an object that handles the event,

and the other - on his method.

Handlers for such events should (but not necessarily) not be simple procedures and functions,

but methods. For example, the TObj object type already contains an OnDestroy event that fires

when the object begins to degrade. When an event is fired, it checks for the presence of an

assigned event handler (that is, the nil inequality of a pointer to a procedure), and if there is one,

the assigned method is called. The OnDestroy event for TObj objects is of type TOnEvent,

declared as follows:
type TOnEvent = procedure (Sender: PObj) of object;

From the above description of this type of event, it follows that any method declared (in the

body of the declaration of some object) as follows is allowed as an OnDestroy handler:

 procedure ObjDestroying (Sender: PObj); (names are in italics, which can always be replaced

with your own). If you try in your code to assign an ordinary procedure (i.e. not a method) to this

event as a handler, or a method whose description differs more than using other names instead

of ObjDestroying and Sender, the compiler will not compile such code, issuing error message.

Fortunately, the Pascal language, in spite of its seeming strictness, allows to perform the so-

called "data type casting". Operation type_name (...) tells the compiler that what is written in

parentheses is of a data type type_name, no matter what data type the expression is being cast.

(Of course, you cannot convert any data type to any other in this way, and the main criterion for

the possibility of converting one data type to another is that the sizes of the variable before and

after the casting must be the same).

Thus, there is a legal opportunity to bypass the requirement that the event handlers are always

methods, and not simple procedures and functions. KOL has a special function MakeMethod that

allows you to "construct" a method from two pointers - an object pointer (which can be nil, and

a simple procedure or function pointer). In order for a method of type procedure of object

constructed in this way to be assigned as an event handler, the same OnDestroy, it is enough to

cast it to the event type when assigned. For example:

MyObj.OnDestroy: = TOnEvent (MakeMethod (nil, @ MyObjDestroying));

99

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Object Type Hierarchy

Note that in order to remove the event handler, in any case, it is enough to assign the value nil

to the event property - the compiler perfectly understands such an operator as assigning a nil

value to both a pointer to a method and a pointer to an object in the event field.

Of course, in this code the compiler will no longer check the correspondence between the

procedure type MyObjDestroy and the event type. On the one hand, this is good, as it allows

you to compile such code. On the other hand, this is not good at all, since anything can be

passed as a procedure pointer. The programmer must now ensure the correct operation of the

event handler.

Pay Attention!

But not all programmers know how a simple procedure (or function) differs from

a method (this is bad, but it's never too late to learn). The essential difference

between a method and simple procedures and functions is that when the

method is called, it receives one more parameter. Namely, the pointer of the

object itself is passed as the (first, and this is important) invisible parameter,

which can be accessed in the method code either explicitly using the reserved

name Self, or implicitly, simply by referring to the methods, fields and properties

of the object to which it belongs this method.

The conclusion from the above is the following: in order for a simple procedure to be used as an

event handler instead of a method, it needs to add the first parameter of type PObj. You can call

it whatever is convenient, for example, _Self_, or Dummy (this name is often used to indicate that

the parameter is not actually used, and is only needed so that other parameters are passed each

in its place).

That is, the following description of the MyObjDestroying procedure will be erroneous:
procedure MyObjDestroying (Sender: PObj);

while the description would be correct:
procedure MyObjDestroying (Dummy: PObj; Sender: PObj);

In the first case, when calling the procedure, instead of the Sender parameter, nil, specified when

constructing the method as an object, would be passed, and the pointer to the object (Sender)

for which the event occurred is lost. Whereas in the second case, it is transmitted correctly. The

program, however, is executed, and there is no problem with the violation of the stack pointer,

because in Pascal, by default, the first three parameters are passed not through the stack, but

through the processor registers. However, if the event handler tries to use Sender, then in the

first case it will always "see" the value nil. Looks discouraging, doesn't it?

Let me finish with this educational program, and I hope that if you want to use a simple

procedure as an event handler, then you will act correctly.

100

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
TList Object (Generic List)

4.12 TList Object (Generic List)

So, the first object that descends from TObj (and is already used in the TObj object itself to store

a list of objects and methods for automatic destruction) is TList. It can store arbitrary pointers or

32-bit numbers (which is why it is called a "universal" list).

In Delphi (both VCL and KOL), a list is not just a single or doubly linked list of pointers, but rather

an array of pointers. The advantages of an array over a linked list are obvious: great speed of

work when you need to quickly access the elements of the list by index. Memory is also

consumed more economically: in the case, for example, of a doubly linked list, along with each

pointer, you would have to store pointers to the previous and next elements in the list, and

allocate your own memory fragment in the heap for this triplet, adding 8 more bytes of

overhead per item.

Unfortunately, the array list also has disadvantages when compared to a simple doubly linked

list. Namely, since the number of pointers for storage is usually unknown in advance, increasing

the size of the array leads to its reallocation in memory, and very often - to moving the entire

accumulated array to a new location. With small sizes of lists, this circumstance can be neglected,

but if the number of elements reaches several thousand, you need to think about optimizing

performance.

For this, there is the Capacity property, which determines how many items in the list will be

allocated memory. If the size of the list (the Count property is the current size of the list) exceeds

the Capacity value, it is recalculated according to some simple algorithm, which is chosen as a

reasonable compromise between saving reserved memory and optimizing program speed by

reducing the number of memory reallocations for an array of pointers. By default, the

recalculation consists in increasing the reserved size by AddBy, initially equal to 4, but if the

AddBy property is set to 0, then the increase occurs immediately by 25%, but not more than

1000. Of course, this algorithm cannot be good for all occasions. ,

The main property of the TList object is Items [i], which provides access to list items by index. For

example, a typical loop of enumerating all the elements of a list from first to last is not much

different from what is done in the VCL:

var L: PList; i: Integer; P: Pointer;
...
for i: = 0 to L. Count-1 do
begin
 P: = L. Items [i];
 ... // working with P
end;

Note (once again, it was already mentioned above) that the short form P: = L [i] is not available,

because objects object, unlike classes, cannot have default properties (which is a pity, for

example, I do not see any point in such a restriction, except for the lack of desire on the part of

Dephi developers to provide this convenient service).

101

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
TList Object (Generic List)

Another significant difference from the VCL is how the TList object type is instantiated. If in VCL

we wrote:

var L: TList;
...
L: = TList.Create;

then in KOL you should write differently:

var L: PList;
...
L: = NewList;

Now I will give the main set of methods and properties of TList, in addition to those already

mentioned:

Add(P) - adds a pointer to the end of the list;

Insert(i, P) - inserts a pointer at position i (all previous elements starting from i, if any, are

shifted one position up);

Delete(i) - removes one element with index i (all elements with index i + 1, if any, are shifted

one position down);

DeleteRange(i, n) - fast deletion of n elements from position i (it is allowed to specify as n a

greater value than there are elements starting from position i, i.e. DeleteRange (i, MaxInt) - will

delete all elements starting from index i);

Remove(P) - finds and removes the first occurrence of the pointer P;

Clear - clears the list, removing all pointers from it;

IndexOf(P) - finds the first occurrence of the pointer P and returns its index (or -1 if there is no

such pointer in the list);

Last - returns the last pointer in the list, equivalent to Items [Count-1];

Swap(i1, i2) - swaps pointers with indices i1 and i2;

MoveItem(i1, i2) - removes an element from position with index i1 and inserts it into position

with index i2;

Release - can be used to destroy the list of pointers to memory areas allocated in the heap (by

the GetMem or AllocMem, ReallocMem functions), beforehand for all non-null pointers,

FreeMem is called;

ReleaseObjects - similar to the previous procedure, but used for a list of pointers to objects: all

objects in the list are destroyed by calling the Free method;

AddItems(a) - allows you to add an array of pointers at once;

Assign(L) - assigns to the list the elements of another list, i.e. simply copies an array of pointers;

DataMemory - returns the current pointer to the internal array of pointers that make up the list

(you should use it with caution, and only if you need to significantly optimize the speed of access

to the elements of the list).

Comment: KOL also has an object type TListEx (but it is moved to the additional module

KOLadd.pas, for reasons of saving the number of lines in the main module KOL.pas, and

because there is no strict need to use it). In addition to the properties and methods of TList, it has

a property Objects [i], methods AddObject (P, o), InsertObject (i, P, o) and others - allowing

102

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
TList Object (Generic List)

you to associate another "object" -number with each element of the list, or pointer. In fact, there

is no special need for such an object, and it is often enough to use the same TList, storing pairs of

values in it and assuming that each even element, together with the next odd one, form an

inseparable bundle.

4.12.1 Speeding up work with large Lists

Speeding up work with large lists and lists of strings. Conditional compilation

symbol TLIST_FAST.

In addition, with the conditional compilation symbol TLIST_FAST, the structure of the list and the

algorithms for working with elements are changed in such a way as to provide a faster operation

of adding new elements. At the same time, the additional UseBlocks property becomes

available, which allows you to control the use of new list methods. The increase in speed occurs

primarily due to the fact that the number of memory reallocation operations (with copying

accumulated pointers to a new location in memory) decreases. More precisely, the reallocation

of memory is no longer required at all, only new blocks of 256 elements per block are allocated

as needed.

Unfortunately, the increase in performance at the stage of adding elements turns into a decrease

in the speed of accessing the elements of the list. In the case when all the elements are used in

the blocks, except for the last one, the reduction in the access speed is insignificant: the block

index is calculated by the index (by simple division by 256), and after obtaining the pointer to

the block from the continuous list of blocks, the required element can be retrieved. The worst

result is obtained if, as a result of deleting or inserting elements somewhere in the middle or at

the beginning of the list, incomplete blocks are formed. In this case, a longer algorithm is used

to find the desired block and the index of the desired element in it, which requires enumeration

of all blocks from the initial to the required block. It is somewhat optimized for the case of

sequential access to elements,

To speed up the work with the "quick" list at the stage when its initial filling is completed, and

then it is used only for accessing elements, it is required to ensure its "dense" filling, in which all

blocks are completely filled in it (except, perhaps, the last). To do this, just call the method

OptimizeForReadcompaction of blocks.

Note that in the case when the TLIST_FAST symbol is defined in the project options, it also

affects the string lists. TStrList, TStrListEx, TWStrList, TWStrListEx... In order to speed up their

work after the initial filling, you should call their method OptimizeForReadwhich refers to the

corresponding method of the inner list.

4.12.2 TList Object - Syntax

TList(unit KOL.pas) TObj _TObj
TList = object(TObj)

103

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
TList Object (Generic List)

Simple list of pointers. It is used in KOL instead of standard VCL TList to store any kind data (or

pointers to these ones). Can be created calling function NewList.

TList properties

property Count: Integer;

Returns count of items in the list. It is possible to delete a number of items at the end of the list,

keeping only first Count items alive, assigning new value to Count property (less then Count it

is).

property Capacity: Integer;

Returns number of pointers which could be stored in the list without reallocating of memory. It is

possible change this value for optimize usage of the list (for minimize number of reallocating

memory operations).

property Items[Idx: Integer]: Pointer; default;

Provides access (read and write) to items of the list. Please note, that TList is not responsible for

freeing memory, referenced by stored pointers.

property AddBy: Integer;

Value to increment capacity when new items are added or inserted and capacity need to be

increased.

property DataMemory: PPointerList;

Raw data memory. Can be used for direct access to items of a list. Do not use it for

TLIST_FAST !

TList methods

destructor Destroy; virtual;

Destroys list, freeing memory, allocated for pointers. Programmer is resposible for destroying of

data, referenced by the pointers.

procedure Clear;

Makes Count equal to 0. Not responsible for freeing (or destroying) data, referenced by

released pointers.

procedure Add(Value: Pointer);

Adds pointer to the end of list, increasing Count by one.

procedure Insert(Idx: Integer; Value: Pointer);

Inserts pointer before given item. Returns Idx, i.e. index of inserted item in the list. Indeces of

items, located after insertion point, are increasing. To add item to the end of list, pass Count

38

103

103

103

104

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
TList Object (Generic List)

as index parameter. To insert item before first item, pass 0 there.

function IndexOf(Value: Pointer): Integer;

Searches first (from start) item pointer with given value and returns its index (zero-based) if

found. If not found, returns -1.

procedure Delete(Idx: Integer);

Deletes given (by index) pointer item from the list, shifting all follow item indeces up by one.

procedure DeleteRange(Idx, Len: Integer);

Deletes Len items starting from Idx.

procedure Remove(Value: Pointer);

Removes first entry of a Value in the list.

function Last: Pointer;

Returns the last item (or nil, if the list is empty).

procedure Swap(Idx1, Idx2: Integer);

Swaps two items in list directly (fast, but without testing of index bounds).

procedure MoveItem(OldIdx, NewIdx: Integer);

Moves item to new position. Pass NewIdx >= Count to move item after the last one.

procedure Release;

Especially for lists of pointers to dynamically allocated memory. Releases all pointed memory

blocks and destroys object itself.

procedure ReleaseObjects;

Especially for a list of objects derived from TObj. Calls Free for every of the object in the list, and

then calls Free for the object itself.

procedure Assign(SrcList: PList);

Copies all source list items.

procedure AddItems(const AItems: array of Pointer);

Adds a list of items given by a dynamic array.

function ItemAddress(Idx: Integer): Pointer;

103

105

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
TList Object (Generic List)

Returns an address of memory occupying by the item with index Idx. (If the item is a pointer,

returned value is a pointer to a pointer). Item with index requested must exist.

4.13 Data Streams in KOL

I have already described working with files in KOL, at a low level . The set of functions for

working with files does not require the use of objects. Working with data stream objects

provides a higher level both for working with files and with any data sets, for example, in

memory. Without the use of objects, it would be quite difficult to provide an acceptable level of

encapsulation for this functionality, so the TStream object type is introduced in KOL, in much the

same way as in the VCL. Just like in the VCL, it has methods for reading (Read) and writing

(Write) data, to change the current position in the stream (Seek).

But that's where the similarities end right there. Instead of inheriting the required data stream

classes from the base TStream class, KOL uses a mechanism of function pointers. In the

"constructors" of instances of data streams (that is, in the NewXXXXXStream functions) these

pointers are assigned certain sets of functions, as a result objects of the same object type

TStream are obtained (constructors, of course, return pointers of created streams, of type

PStream) , but these objects provide different functionality based on which constructor is called.

So, the following "constructors" of data streams are defined in the KOL module itself:

NewReadFileStream(s) - creates a stream for reading a file (an existing file is opened in "read-

only" mode);

NewWriteFileStream(s) - creates a stream for writing a file (a new file is created, or, if it already

exists, the file is opened for writing);

NewReadWriteFileStream(s) - a stream is created for writing and reading a file;

NewFileStream(s, options) - allows you to create a file stream with a more detailed listing of

the opening and creation modes (these are the same options that are used in the FileCreate

function);

NewMemoryStream - creates a stream in memory (for writing and reading);

NewExMemoryStream(P, n)- also creates a thread in memory, but this time in existing

memory. If in the previous "constructor" a stream was created that initially does not contain data

and grows as it is written to it by methods like Write, then this function creates a stream on an

existing contiguous piece of memory (with address P and length n bytes), and the size of this

stream does not may change while working with a stream. This memory is not considered to be

"owned" by such a thread, and when the data stream object is destroyed, it is not freed in any

way (to free it, if, for example, it was dynamically allocated, the code or object that allocated it

should).

The benefits of creating this kind of flow are obvious. Let's say you already have some structured

data in memory, and there is a method that can read this data from the stream. Instead of

creating a regular stream in memory (NewMemoryStream), writing this data to it, and then

reading it, we simply create a stream in existing memory (NewExMemoryStream), and

immediately read the data using the available method. At the same time, at least the allocation

67

106

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Data Streams in KOL

of memory for a new stream and copying of this data are saved, which in the case of a large

data size also has a very positive effect on the performance of the application.

NewMemBlkStream(blksize) and NewMemBlkStream_WriteOnly (blksize) - These two

constructors allow you to create a stream of data in memory, but continuity is guaranteed only

for the chunk of data written by a single call to the Write method. What is important is that it is

guaranteed that the recorded data is not transferable in the future. This type of data flow is very

convenient to use to improve the efficiency of the memory manager, providing a single large

block of data allocation at once. That is, memory is allocated less frequently, but in large

portions (and subsequently freed up faster). Usually, it makes sense to use this kind of stream in

write-only mode, getting the address of the next written memory block through the

fJustWrittenBlockAddress field. In KOL itself, such a stream is used by the TDirList object type to

improve performance.

NewExFileStream(hFile) - similar to the previous one, creates a stream for reading or writing to

a file, but based on the existing descriptor of an already open file. Note that the descriptor can

also refer to an object of type pipe (pipe), and there is no other way to create a stream for

working with a pipe.

In addition to this set of "constructors" of streams, it is possible to create your own types of data

streams based on TStream. (For example, the DIUCL package defines the stream constructors

NewUCLCStream and NewUCLDStream, which compress and decompress data in a way that

works with streams.)

The set of methods on the TStream object in KOL provides everything you need to read and

write data. When working with KOL data streams, unlike VCL, you need to remember that all

methods and properties, including those that are not typical for this type of data flow, remain

open for use. But, for example, it makes no sense to try to write to a read-only file stream, or the

Handle property has no meaning for the in-memory data stream (Handle provides access to the

file descriptor, but only matters for file streams). In VCL, additional control is provided by the

compiler at the stage of writing the code; in KOL, you need a little more care, but it achieves a

more compact size of the application, with the same functionality.

Here is a list of the main methods and properties of TStream:

Read(buf, n) - reads a maximum of n bytes from the current position in the stream into the

buffer, returns the number of bytes read (it may be less if the end of the data has been

reached);

Write(buf, n) - writes n bytes from the buffer in memory to the stream;

Seek(n, method) - moves a position in the stream, returns a new position;

Position - current position in the stream;

Size - stream size (for some stream types the stream size may not be known);

Memory - a pointer to the memory in which the stream data is located in memory (for other

types of streams it is always nil);

Capacity - memory reserve for streams in memory (as well as for TList, it can be changed

externally in order to optimize the speed of memory allocation);

Handle - file stream descriptor (you can analyze it for the inequality of the constant

INVALID_HANDLE_VALUE immediately after opening to make sure that the connection with the

107

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Data Streams in KOL

file is established normally, for example, or use other low-level functions for working with files

that allow an open file descriptor as a parameter, but with a certain caution);

SaveToFile(s) - saves all the contents of the stream to a file named s.

This set is extended with additional methods for working with strings in a stream:

WriteStr(s) - writes the specified string to the stream (neither the terminating byte with the

code # 0, nor the length of the string is written, it is assumed that the "reader" of the stream will

subsequently know this length: either it is written in a different way to the same stream, or it is

constant, or is calculated somehow);

WriteStrZ(s) - writes a string and a terminating null byte to the stream;

ReadStrZ - reads a null-terminated string from the stream;

ReadStr - reads a string from the stream, ending with one of the combination of characters: # 0,

13 # 10, # 13, # 10;

ReadStrLen(n) - reads a string of length n bytes from the stream;

WriteStrEx(s) - writes to the stream first the length of the string (4 bytes), and then the string

itself - without the terminating null byte;

ReadStrEx - reads from the stream first the length of the string, then the string itself (the inverse

of the previous write function);

ReadStrExVar(s) - the same as the previous method, but reads a string into the s parameter,

and returns the number of bytes read;

WriteStrPas(s) - writes a short string (such strings up to 255 bytes in length were used in the

first versions of the Pascal language, if you remember, the size of such a string is stored in the

0th byte of the string), while the length of the string is written first (1 byte);

ReadStrPas - reads a Pascal string (first read the byte storing the length of the Pascal string,

from 0 to 255, then the string itself).

And one more set of methods is used to work with threads in asynchronous mode, when the

program, having issued a request for a read or write operation, can continue without stopping to

wait for the operation to complete, and then, when the result of the operation is already

definitely needed by the program, the Wait method is called to completion of the current

operation:

SeekAsync(n, method) - the same as Seek, but asynchronously;

ReadAsync(buf, n) - the same as Read (the essential difference is that, since the operation has

just begun, but not yet completed, this procedure cannot return the number of bytes read,

therefore it is framed as a procedure);

WriteAsync(buf, n) - the same as Write, but asynchronously;

Busy - returns true if the thread has not yet completed the operation;

Wait - permanently waiting for the completion of the last asynchronous operation.

108

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Data Streams in KOL

Quite often it is required to transfer a portion of data from one data stream to another, for

this there are global functions:

Stream2Stream(dst, src, n)- reads n bytes from the src stream (source - source) and writes

them to the dst stream. In the case when one of the streams (or both) is a stream in memory, it

performs optimization and does not create an intermediate buffer up to n bytes in size, but uses

the memory in the stream in memory as a buffer;

Stream2StreamEx(dst, src, n) - the same as above, but does not optimize for streams in

memory, but easily copes with very large data streams (since it sends data in portions through a

64 Kbyte buffer);

Stream2StreamExBufSz(dst, src, n, bufsz)- the same as the previous function, but allows you

to set your own size of the intermediate buffer for data transfer. It is likely that allocating a 1 MB

buffer will significantly speed up the transfer of large amounts of data, but at the same time

allocating an even larger portion of memory for the buffer can only reduce performance if there

is not enough memory in the system.

In the case when the resources in the application contain some kind of data that is easy to

read through a stream, the following global function comes in handy:

Resource2Stream(dst, inst, s, restype) - allows you to read a resource of any restype type

into the stream (not only from the application module, but also from any executable file for

which the inst descriptor is obtained).

Among other things, the TStream type has Methods and Data properties for developers of new

flavors of data streams. To create a new kind of data stream, you need to define your own

"constructor", and in this constructor you specify your set of methods (using the Methods

property) for reading, writing and changing the position in the stream. These methods can use

the Data structure to place their service data (the usual set should be enough, but, as a last

resort, it is always possible to allocate an additional block of memory and use one of the fields of

this structure to refer to its structure).

4.13.1 Data Streams - Syntax

type TStream = object(TObj)

Simple stream object. Can be opened for file, or as memory stream (see NewReadFileStream

, NewWriteFileStream , NewMemoryStream , etc.). And, another type of streaming object

can be derived (without inheriting new object type, just by writing another New...Stream

method, which calls _NewStream and pass methods record to it).

function _NewStream(const StreamMethods: TStreamMethods): PStream;

Use this method only to define your own stream type. See also declared below (in KOL.pas)

methods used to implement standard KOL streams. You can use it in your code to create

streams, which are partially based on standard methods.

92

109

109 109

108

109

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Data Streams in KOL

function NewFileStream(const FileName: KOLString; Options: DWORD): PStream;

Creates file stream for read and write. Exact set of open attributes should be passed through

Options parameter (see FileCreate where those flags are listed).

function NewFileStreamWithEvent(const FileName: KOLString; Options: DWORD):
PStream;

Creates file stream for read and write. Exact set of open attributes should be passed through

Options parameter (see FileCreate where those flags are listed). Also, resulting stream is

supporting OnChangePos event.

function NewReadFileStream(const FileName: KOLString): PStream;

Creates file stream for read only.

function NewReadFileStreamWithEvent(const FileName: KOLString): PStream;

Creates file stream for read only, supporting OnChangePos event.

function NewWriteFileStream(const FileName: KOLString): PStream;

Creates file stream for write only. Truncating of file (if needed) is provided automatically.

function NewWriteFileStreamWithEvent(const FileName: KOLString): PStream;

Creates file stream for write only. Truncating of file (if needed) is provided automatically.

Created stream supports OnChangePos event.

function NewReadWriteFileStream(const FileName: KOLString): PStream;

Creates stream for read and write file. To truncate file, if it is necessary, change Size property.

function NewReadFileStreamW(const FileName: KOLWideString): PStream;

Creates file stream for read only.

function NewWriteFileStreamW(const FileName: KOLWideString): PStream;

Creates file stream for write only. Truncating of file (if needed) is provided automatically.

function NewReadWriteFileStreamW(const FileName: KOLWideString): PStream;

Creates stream for read and write file. To truncate file, if it is necessary, change Size property.

function NewExFileStream(F: HFile): PStream;

Creates read only stream to read from opened file or pipe from the current position. When

stream is destroyed, file handle still not closed (your code should do this) and file position is not

changed (after the last read operation).

function NewMemoryStream: PStream;

Creates memory stream (read and write).

function NewMemoryStreamWithEvent: PStream;

110

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Data Streams in KOL

Creates memory stream (read and write). Created stream support OnChangePos event.

function NewExMemoryStream(ExistingMem: Pointer; Size: DWORD): PStream;

Creates memory stream on base of existing memory. It is not possible to write out of top bound

given by Size (i.e. memory can not be resized, or reallocated. When stream object is destroyed

this memory is not freed.

function NewMemBlkStream(BlkSize: Integer): PStream;

Creates memory stream which consists from blocks of given size. Contrary to a memory stream,

contents of the blocks stream should not be accessed directly via fMemory but therefore it is

possible to access its parts by portions written to blocks still those were written contigously. To

do so, get an address of just written portion for further usage via field fJustWrittenBlkAddress. It

is guarantee that blocks of memory allocated during write process never are relocated until

destruction the stream.

function NewMemBlkStream_WriteOnly(BlkSize: Integer): PStream;

Same as NewMemoryStream

function NewConcatStream(Stream1, Stream2: PStream): PStream;

Creates a stream which is a concatenation of two source stream. After the call, both source

streams are belonging to the resulting stream and these will be destroyed together with the

resulting stream. (So forget about it). After the call, first stream will not be changed in size via

methods of concatenated stream (and it is not recommended to use further Stream1 and

Stream2 methods too). But Stream2 can still be increased, if it allows doing so when some data

are appended or Size of resulting stream is changed (but not less then Stream1.Size). Nature

and physical location of Stream1 and Stream2 are not important and can be absolutely different.

But it is supposed that both streams are not compressed and its Size is known always and Seek

operation is valid. This function accepts recursive (multi-level) usage: resulting concatenation

stream can be used as a left or right parameter to create another concatenation stream later, so

it is possible to build a tree of streams concatenated, concatenating this way several different

streams and use it as a single data streaming object.

function NewSubStream(BaseStream: PStream; const FromPos, Size: TStrmSize):
PStream;

Creates a stream which is a subpart of BaseStream passes, starting from FromPos and with given

Size. Like in function NewConcatStream , passes BaseStream become owned by newly

created sub-stream object, and will be destroyed automatically together with a sub-stream. If

you want to provide more long life time for a base stream (e.g. if you plan to use it after a sub-

stream based on it is destroyed), use method RefInc for base stream once to prevent it from

destroying when the sub-stream is destroyed. Note: be careful and avoid direct calling methods

and properties of the base stream, while you have a sub-stream created on base it, since the

sub-stream actually redirects all the requests to the parent base stream. Sub-stream accepts

setting Size to greater value later, and if some data are written to it, it is written actually to the

base stream, and when it is written beyond the end position, this will increase size of the base

stream too (and if it is a file stream, this also will increase size of the file on which the base

109

110

111

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Data Streams in KOL

stream was created). This function accepts recursive (multi-level) usage: it is possible to create

later another sub-stream on base of existing sub-stream, still it is actully can be treated as usual

stream.

function Stream2Stream(Dst, Src: PStream; const Count: TStrmSize): TStrmSize;

Copies Count (or less, if the rest of Src is not sufficiently long) bytes from Src to Dst, but with

optimizing in cases, when Src or/and Dst are memory streams (intermediate buffer is not

allocated).

function Stream2StreamEx(Dst, Src: PStream; const Count: TStrmSize): TStrmSize;

Copies Count bytes from Src to Dst, but without any optimization. Unlike Stream2Stream

function, it can be applied to very large streams. See also Stream2StreamExBufSz .

function Stream2StreamExBufSz(Dst, Src: PStream; const Count: TStrmSize; BufSz:
DWORD): TStrmSize;

Copies Count bytes from Src to Dst using buffer of given size, but without other optimizations.

Unlike Stream2Stream function, it can be applied to very large streams

function Resource2Stream(DestStrm: PStream; Inst: HInst; ResName: PKOLChar;
ResType: PKOLChar): Integer;

Loads given resource to DestStrm. Useful for non-standard resources to load it into memory

(use memory stream for such purpose). Use one of following resource types to pass as ResType:

RT_ACCELERATO

R

Accelerator table

RT_ANICURSOR Animated cursor

RT_ANIICON Animated icon

RT_BITMAP Bitmap resource

RT_CURSOR Hardware-dependent cursor resource

RT_DIALOG Dialog box

RT_FONT Font resource

RT_FONTDIR Font directory resource

RT_GROUP_CUR

SOR

Hardware-independent cursor resource

RT_GROUP_ICO

N

Hardware-independent icon resource

RT_ICON Hardware-dependent icon resource

111

111

111

112

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Data Streams in KOL

RT_MENU Menu resource

RT_MESSAGETA

BLE

Message-table entry

RT_RCDATA Application-defined resource (raw data)

RT_STRING String-table entry

RT_VERSION Version resource

For example:

var MemStrm: PStream;
 JpgObj: PJpeg;
......
 MemStrm := NewMemoryStream;
 JpgObj := NewJpeg;
......
 Resource2Stream(MemStrm, hInstance, 'MYJPEG', RT_RCDATA);
 MemStrm.Position := 0;
 JpgObj.LoadFromStream(MemStrm);
 MemStrm.Free;
......

TStream properties

property Size: TStrmSize;

Returns stream size. For some custom streams, can be slow operation, or even always return

undefined value (-1 recommended).

property Position: TStrmSize;

Current position

property Memory: Pointer;

Only for memory stream.

property Handle: THandle;

Only for file stream. It is possible to check that Handle <> INVALID_HANDLE_VALUE to ensure

that file stream is created OK.

property Methods: PStreamMethods;

Pointer to TStreamMethods record. Useful to implement custom-defined streams, which can

access its fCustom field, or even to change methods when necessary.

property Data: TStreamData;

113

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Data Streams in KOL

Pointer to TStreamData record. Useful to implement custom-defined streams, which can access

Data fields directly when implemented.

property Capacity: TStrmSize;

Amound of memory allocated for data (MemoryStream).

Properties, inherited from TObj

TStream methods

function Read(var Buffer; const Count: TStrmSize): TStrmSize;

Reads Count bytes from a stream. Returns number of bytes read.

function Seek(const MoveTo: TStrmMove; MoveMethod: TMoveMethod): TStrmSize;

Allows to change current position or to obtain it. Property Position uses this method both for

get and set position.

function Write(var Buffer; const Count: TStrmSize): TStrmSize;

Writes Count bytes from Buffer, starting from current position in a stream. Returns how much

bytes are written.

function WriteVal(Value: DWORD; Count: DWORD): DWORD;

Writes maximum 4 bytes of Value to a stream. Allows writing constants easier than via Write .

function WriteStr(S: AnsiString): DWORD;

Writes string to the stream, not including ending #0. Exactly Length(S) characters are written.

function WriteStrZ(S: AnsiString): DWORD;

Writes string, adding #0. Number of bytes written is returned.

function WriteWStrZ(S: KOLWideString): DWORD;

Writes string, adding #0. Number of bytes written is returned.

function ReadStrZ: AnsiString;

Reads string, finished by #0. After reading, current position in the stream is set to the byte,

follows #0.

function ReadWStrZ: KOLWideString;

Reads string, finished by #0. After reading, current position in the stream is set to the byte,

follows #0.

function ReadStr: AnsiString;

Reads string, finished by #13, #10 or #13#10 symbols. Terminating symbols #13 and/or #10 are

92

112

113

114

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Data Streams in KOL

not added to the end of returned string though stream positioned follow it.

function ReadStrLen(Len: Integer): AnsiString;

Reads string of the given length Len.

function WriteStrEx(S: AnsiString): DWord;

Writes string S to stream, also saving its size for future use by ReadStrEx* functions. Returns

number of actually written characters.

function ReadStrExVar(var S: AnsiString): DWord;

Reads string from stream and assigns it to S. Returns number of actually read characters. Note:

String must be written by using WriteStrEx function. Return value is count of characters READ,

not the length of string.

function ReadStrEx: AnsiString;

Reads string from stream and returns it.

function WriteStrPas(S: AnsiString): DWORD;

Writes a string in Pascal short string format - 1 byte length, then string itself without trailing #0

char. S parameter length should not exceed 255 chars, rest chars are truncated while writing.

Total amount of bytes written is returned.

function ReadStrPas: AnsiString;

Reads 1 byte from a stream, then treat it as a length of following string which is read and

returned. A purpose of this function is reading strings written using WriteStrPas .

procedure SeekAsync(MoveTo: TStrmMove; MoveMethod: TMoveMethod);

Changes current position asynchronously. To wait for finishing the operation, use method

Wait .

procedure ReadAsync(var Buffer; Count: DWord);

Reads Count bytes from a stream asynchronously. To wait finishing the operation, use method

Wait .

procedure WriteAsync(var Buffer; Count: DWord);

Writes Count bytes from Buffer, starting from current position in a stream - asynchronously. To

wait finishing the operation, use method Wait .

function Busy: Boolean;

Returns TRUE until finishing the last asynchronous operation started by calling SeekAsync ,

ReadAsync , WriteAsync methods.

114

114

115

115

115

114

114 114

115

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Data Streams in KOL

procedure Wait;

Waits for finishing the last asynchronous operation.

procedure SaveToFile(const Filename: KOLString; const Start, CountSave:
TStrmSize);

Methods, inherited from TObj

TStream events

property OnChangePos: TOnEvent;

To allow using this event, create stream with special constructing function like

NewMemoryStreamWithEvent or NewReadFileStreamWithEvent, or replace reading /

writing methods to certain supporting OnChangePos event.

4.14 List of Strings

Lists of strings in KOL (TStrList, TStrListEx and others)

Of course, string lists are a very handy sort of object for storing randomly sized strings. They are

also present in KOL, and are called TStrList and TStrListEx. But in KOL, these lists are not used

to virtualize access to strings in Memo or RichEdit. An important difference from TStrings in

VCL: strings cannot contain the # 0 character, since strings are stored exactly as character strings,

terminated by a byte with code # 0. This is dictated by considerations of speed of work with

large texts. Loading text (for example, from a file) into a TStrList object, or saving text to a file

or stream is extremely fast and is instantaneous, even for megabytes and tens of megabytes.

The object TStrListEx differs from its TStrList ancestor (one of the rare cases in KOL when the

object type is not directly inherited from TObj) in that it has an Objects property that maps each

string to a 32-bit number, or a pointer (in fact, TStrListEx is built as a union of TStrList and

TList, and operations on their elements are performed synchronously).

The "constructor" functions are used to create lists of strings:

NewStrList - creates an object of type TStrList, returns a pointer to it of type PStrList;

NewStrListEx - creates a TStrListEx object, returns a pointer of the PStrListEx type.

The main set of methods and properties typical for TStrList:

Count - the number of lines in the list;

Add(s) - adds a line to the end of the list;

Insert(i, s) - inserts a line at position i;

AddStrings(SL) - adds to the end of the list all lines from another object of the PStrList type;

92

116

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
List of Strings

Assign(SL) - assigns to the given list of strings the contents of the list of strings specified by the

parameter;

Clear - clears the list, freeing the memory occupied by lines;

Delete(i) - deletes the line with index i;

DeleteLast - deletes the last line in the list;

IndexOf(s) - finds the string s in the list (case-sensitive), and returns the index of the found

string, or -1 if the string is not found;

IndexOf_NoCase(s) - the same as the previous method, but the search for the specified string is

case-insensitive (meaning the case of the Ascii encoding, the case of national characters cannot

be ignored by this method);

IndexOfStrL_NoCase(s, n) - the same as the previous method, but only the first n characters of

the string are compared;

Find(s, i) - performs a search in a sorted list (the method of halving is used, which increases the

speed of searching in large lists of strings);

Items[i] - this property provides access to individual list items as Ansi-strings, and allows them

to be read or modified;

Last - property for accessing the last line in the list (equivalent to Items [Count-1])

ItemPtrs[i]- this property, unlike Items, allows you to get the address of the beginning of the

list line by its index. For the purpose of reading strings or modifying them in place, this method

is preferable in terms of performance, since there is no need to allocate memory on the heap

for a copy of the string. Of course, when modifying strings "in place", it is necessary to control

the possible overstepping of the string when writing to it, otherwise unpleasant consequences

are guaranteed. Up to the immediate crash of the application or the occurrence of a memory

access exception - Access Violation, or, worse, to the corruption of the service fields of the heap

manager, and the subsequent crash of the application, the causes of which are much more

difficult to identify and fix;

Sort(casesensitive) - sorts strings (after which you can use the Find method, for example);

AnsiSort(casesensitive) - sorts strings as ANSI (i.e., the order of national characters is also taken

into account);

Swap(i1, i2) - swaps strings in the list;

Move(i1, i2) - moves the line with index i1 to position i2;

Text - provides the ability to work with all lines of the list as one line. When reading this

property, all lines - quickly - are combined into one text, consisting of lines of text separated by

characters # 13 # 10, when assigning a value to this property, the original large line - quickly - is

split into separate lines based on the presence of combinations of characters # 13 # 10 , # 13, #

0 at the end of each substring. An important detail: immediately after assigning a value to this

property, all lines in the list are stored in a contiguous piece of memory, one after another, each

ending with byte # 0. This circumstance can be used in order to perform fast processing of large

texts (having received a pointer to the first line, with index 0, through the ItemPtrs [0] property,

then you can "run" all lines with the pointer,

SetText(s, append) - an additional method that allows you to quickly add text from a single

line, breaking it into lines in much the same way as it is done when assigning to the Text

property;

SetUnixText(s, append) - similar to the previous one, but single characters # 10 (standard for

Unix systems) are also considered as separators;

117

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
List of Strings

Join(s) - a function that returns concatenation of strings like the Text property does, but the line

separator is specified by a parameter.

A special group can be divided into a set of methods for exchanging data with files and data

streams:

LoadFromFile(s) - loads a list of strings from a text file;

SaveToFile(s) - saves a list of lines as text in a file;

LoadFromStream(strm) - loads a list of lines from the stream (reading it from the current

position to the end of the stream);

SaveToStream(strm) - saves the list of strings to the stream (writing it from the current position

in the stream);

AppendToFile(s) - adds lines from the list to the end of the specified file;

MergeFromFile(s) - adds lines from the specified file to the list of lines;

A list of strings can be used in a special way as a set of named values of the form <value_name>

= <value> (similar to Ini files), and not only the '=' symbol can be used as a sign separating the

value name from the value itself, but also, for example , the ':' character, and any other character.

When creating the list, the symbol specified by the global variable DefaultNameDelimiter is used

to initialize the delimiter, which by default stores the value '='. You can either change the value

of this variable before creating the list, or you can change the NameDelimiter property of each

individual list. Next, I will list the methods and properties for working with a list of strings as with

a list of values:

Values[s] - this property allows you to read or change the value named s (if the name is not

found during reading, an empty string is returned, if the name does not exist during writing, it is

added);

IndexOfName(s) - returns the index of the string containing the value with the specified name;

LineName[i] - returns or changes (when writing) the name in the string with index i;

LineValue[i] - similarly for the value in the string with index i.

The TStrListEx object type, being an inheritor of the TStrList type, retains all these capabilities,

and adds to them the ability to associate each line in the list with a numeric value, or a pointer -

at will. Due to the fact that the policy of inheritance and abuse of virtual methods is not

welcomed in KOL, you should not use object parameter polymorphism, and work with TStrListEx

as with a TStrList object. Nothing terrible will happen (most likely), but when deleting lines,

changing their order and other operations, the agreement between the lines and their

associated "objects" is likely to be broken. Conclusion from the above: if you already use an

object of type TStrListEx, then this object in any code that works with it must be declared exactly

as TStrListEx.

All of the above methods of the TStrList object also hold for TStrListEx, but if the specialized

analogs developed for TStrListEx are not used, then the object is assumed to be null (i.e. when

118

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
List of Strings

calling Insert (i, s)a row will be inserted at position i, and the value 0 will be inserted as its object,

also at position i). Below is a list of methods and properties specific to TStrListEx:

Objects[i] - access to objects associated with strings, by the string index;

LastObj - access to the last "object", equivalent to Objects [Count-1];

Assign(SLex) - assigns strings and objects from the specified extended list of strings;

AddObject(s, o) - adds a line immediately with the "object" -number associated with it;

InsertObject(i, s, o) - similar to the previous one, inserts a line together with the object, at

position i;

IndexOfObj(o) - finds the first object o, and returns its index (or -1 if no such "object" is found).

In addition to the given object types for storing lists of strings, KOL also has others (but they are

moved to the additional module KOLadd.pas): TFastStrListEx, TWStrList, TWStrListEx.

The TFastStrListEx object is similar in functionality to the TStrListEx type, but is optimized for

fast addition of lines. In order not to clutter up this text, I will not give its detailed description

here, you can always look into the source code and familiarize yourself with the set of its

properties and methods.

The TWStrList and TWStrListEx objects are similar to the TStrList and TStrListEx objects, but are

focused on working with Unicode strings (WideString), consisting of double-byte characters

(WideChar). Therefore, it does not make much sense to describe them in detail as well, almost

everything said for ordinary lists of strings is also true for these lists, except for the type of

strings stored in them.

Unlike many other objects in KOL, when the UNICODE_CTRL directive is used, the TStrList and

TStrListEx string lists do not automatically become UNICODE string lists. In order not to insert

conditional compilation directives of the form {$ IFDEF UNICODE_CTRLS}… {$ ELSE}… {$ ENDIF}

into your code, the TKOLStrList / TKOLStrListEx types are declared in KOL, which are

equivalent to TStrList / TStrListEx in the case of using Ansi string types, and are replaced

TWStrList / TWStrListEx in case of adding the UNICODE_CTRLS conditional compilation

symbol. This is necessary because sometimes in Ansi applications you need to work with

UNICODE text and (even more often) on the contrary - in a UNICODE project you need to

process a "clean" Ansi list of strings.

Therefore, when creating a project that can compile with or without this option, you should use

the TKOLStrList data type and the NewKOLStrList function to create it.

4.14.1 List of Strings - Syntax

function NewStrList: PStrList;

Creates string list object.

function WStrLen(W: PWideChar): Integer;

119

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
List of Strings

Returns Length of null-terminated Unicode string.

function NewStrListEx: PStrListEx;

Creates extended string list object.

procedure WStrCopy(Dest, Src: PWideChar);

Copies null-terminated Unicode string (terminated null also copied).

procedure (Dest, Src: PWideChar; MaxLen: Integer);

Copies null-terminWStrLCopyated Unicode string (terminated null also copied).

function WStrCmp(W1, W2: PWideChar): Integer;

Compares two null-terminated Unicode strings.

function WStrCmp_NoCase(W1, W2: PWideChar): Integer;

Compares two null-terminated Unicode strings.

type PWStrList = ̂ TWstrList;

function NewWStrList: PWStrList ;

Creates new TWStrList object and returns a pointer to it.

function NewWStrListEx: PWStrListEx;

Creates new TWStrListEx objects and returns a pointer to it.

function NewKOLStrList: PKOLStrList;

function NewKOLStrListEx: PKOLStrListEx;

TStrList

TStrList(unit KOL.pas) TObj _TObj

TStrList = object(TObj)

Easy string list implementation (non-visual, just to store string data). It is well improved and has

very high performance allowing to work fast with huge text files (more then megabyte of text

data). Please note that #0 charaster if stored in string lines, will cut it preventing reading the rest

of a line. Be careful, if your data contain such characters.

119

124

92 92

92

120

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
List of Strings

TStrList properties

property Values[const AName: Ansistring]: Ansistring;

by Dod. Returns right side of a line starting like Name=...

property Count: integer;

Number of strings in a string list.

property Items[Idx: integer]: Ansistring; default;

Strings array items. If item does not exist, empty string is returned. But for assign to property,

string with given index *must* exist.

property ItemPtrs[Idx: Integer]: PAnsiChar;

Fast access to item strings as PChars.

property Text: Ansistring;

Content of string list as a single string (where strings are separated by characters $0D,$0A).

TStrList methods

function IndexOfName(AName: Ansistring): Integer;

by Dod. Returns index of line starting like Name=...

function Add(const S: Ansistring): integer;

Adds a string to list.

procedure AddStrings(Strings: PStrList);

Merges string list with given one. Very fast - more preferrable to use than any loop with calling

Add method.

procedure Assign(Strings: PStrList);

Fills string list with strings from other one. The same as AddStrings , but Clear is called first.

procedure Clear;

Makes string list empty.

procedure Delete(Idx: integer);

Deletes string with given index (it *must* exist).

120

120 120

121

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
List of Strings

procedure DeleteLast;

Deletes the last string (it *must* exist).

function IndexOf(const S: AnsiString): integer;

Returns index of first string, equal to given one.

function IndexOf_NoCase(const S: Ansistring): integer;

Returns index of first string, equal to given one (while comparing it without case sensitivity).

function IndexOfStrL_NoCase(Str: PAnsiChar; L: Integer): integer;

Returns index of first string, equal to given one (while comparing it without case sensitivity).

function Find(const S: AnsiString; var Index: Integer): Boolean;

Returns Index of the string, equal or greater to given pattern, but works only for sorted TStrList

object. Returns TRUE if exact string found, otherwise nearest (greater then a pattern) string index

is returned, and the result is FALSE. And in such _case Index is returned negated when the S

string is less then the string found.

function FindFirst(const S: AnsiString; var Index: Integer): Boolean;

Like above but always returns Index of the first string, equal or greater to given pattern. Also

works only for sorted TStrList object. Returns TRUE if exact string found, otherwise nearest

(greater then a pattern) string index is returned, and the result is FALSE.

procedure Insert(Idx: integer; const S: Ansistring);

Inserts string before one with given index.

procedure Move(CurIndex, NewIndex: integer);

Moves string to another location.

procedure SetText(const S: Ansistring; Append2List: Boolean);

Allows to set strings of string list from given string (in which strings are separated by $0D,$0A or

$0D characters). Text must not contain #0 characters. Works very fast. This method is used in

all others, working with text arrays (LoadFromFile , MergeFromFile , Assign ,

AddStrings).

procedure SetUnixText(const S: AnsiString; Append2List: Boolean);

Allows to assign UNIX-style text (with #10 as string separator).

function Last: AnsiString;

Last item (or '', if string list is empty).

120

122 122 120

120

122

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
List of Strings

procedure Swap(Idx1, Idx2: Integer);

Swaps to strings with given indexes.

procedure Sort(CaseSensitive: Boolean);

Call it to sort string list.

procedure AnsiSort(CaseSensitive: Boolean);

Call it to sort ANSI string list.

procedure SortEx(const CompareFun: TCompareEvent);

Call it to sort via your own compare procedure

function Join(const sep: AnsiString): AnsiString;

by Sergey Shishmintzev

function LoadFromFile(const FileName: KOLString): Boolean;

Loads string list from a file. (If file does not exist, nothing happens). Very fast even for huge text

files.

procedure LoadFromStream(Stream: PStream; Append2List: Boolean);

Loads string list from a stream (from current position to the end of a stream). Very fast even for

huge text.

procedure MergeFromFile(const FileName: KOLString);

Merges string list with strings in a file. Fast.

function SaveToFile(const FileName: KOLString): Boolean;

Stores string list to a file.

procedure SaveToStream(Stream: PStream);

Saves string list to a stream (from current position).

function AppendToFile(const FileName: KOLString): Boolean;

Appends strings of string list to the end of a file.

TStrListEx

TStrListEx(unit KOL.pas) TStrList TObj _TObj119 92 92

123

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
List of Strings

TStrListEx = object(TStrList)

Extended string list object. Has additional capability to associate numbers or objects with string

list items.

TStrListEx properties

property Objects[Idx: Integer]: DWORD;

Objects are just 32-bit values. You can treat and use it as pointers to any other data in the

memory. But it is your task to free allocated memory in such case therefore.

If the last item of a string list is deleted vis DeleteLast method (but not via Delete method),

it's object still is preserved. As well, it is possible to set Objects[idx] for idx >= Count . To get

know object's count, rather then strings count, use ObjectCount property.

property ObjectCount: Integer;

Returns number of objects available. This value can differ from Count after some operations:

objects are stored in the independant list and only synchronization is provided while using

methods Delete , Insert , Add , AddObject , InsertObject while changing the list.

Properties, inherited from TStrList

TStrListEx methods

destructor Destroy; virtual;

procedure AddStrings(Strings: PStrListEx);

Merges string list with given one. Very fast - more preferrable to use than any loop with calling

Add method.

procedure Assign(Strings: PStrListEx);

Fills string list with strings from other one. The same as AddStrings , but Clear is called first.

procedure Clear;

Makes string list empty.

procedure Delete(Idx: integer);

Deletes string with given index (it *must* exist).

procedure DeleteLast;

Deletes the last string and correspondent object in the list.

procedure Move(CurIndex, NewIndex: integer);

Moves string to another location.

procedure Swap(Idx1, Idx2: Integer);

Swaps to strings with given indexes.

119

120 120

120

123

120

120 121 120 124 124

119

120

120 120

124

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
List of Strings

procedure Sort(CaseSensitive: Boolean);

Call it to sort string list.

procedure AnsiSort(CaseSensitive: Boolean);

Call it to sort ANSI string list.

function LastObj: DWORD;

Object assotiated with the last string.

function AddObject(const S: AnsiString; Obj: DWORD): Integer;

Adds a string and associates given number with it. Index of the item added is returned.

procedure InsertObject(Before: Integer; const S: AnsiString; Obj: DWORD);

Inserts a string together with object associated.

function IndexOfObj(Obj: Pointer): Integer;

Returns an index of a string associated with the object passed as a parameter. If there are no

such strings, -1 is returned.

TWStrList

TWStrList(unit KOL.pas) TObj _TObj

TWStrList = object(TObj)

String list to store Unicode (null-terminated) strings.

TWStrList properties

property Items[Idx: Integer]: KOLWideString;

See also TStrList.Items
property ItemPtrs[Idx: Integer]: PWideChar;

See also TStrList.ItemPtrs
property Count: Integer;

See also TStrList.Count
property Text: KOLWideString;

See also TStrList.Text

Properties, inherited from TObj

TWStrList methods

92 92

92

120

120

120

120

92

125

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
List of Strings

procedure SetText(const Value: KOLWideString);

See also TStrList.SetText

destructor Destroy; virtual;

procedure Clear;

See also TStrList.Clear

function Add(const W: KOLWideString): Integer;

See also TStrList.Add

procedure Insert(Idx: Integer; const W: KOLWideString);

See also TStrList.Insert

procedure Delete(Idx: Integer);

See also TStrList.Delete

procedure AddWStrings(WL: PWStrList);

See also TStrList.AddStrings

procedure Assign(WL: PWStrList);

See also TStrList.Assign

function LoadFromFile(const Filename: KOLString): Boolean;

See also TStrList.LoadFromFile

procedure LoadFromStream(Strm: PStream; AppendToList: Boolean);

See also TStrList.LoadFromStream

function MergeFromFile(const Filename: KOLString): Boolean;

See also TStrList.MergeFromFile

procedure MergeFromStream(Strm: PStream);

See also TStrList.MergeFromStream

function SaveToFile(const Filename: KOLString): Boolean;

See also TStrList.SaveToFile

procedure SaveToStream(Strm: PStream);

See also TStrList.SaveToStream

function AppendToFile(const Filename: KOLString): Boolean;

See also TStrList.AppendToFile

procedure Swap(Idx1, Idx2: Integer);

See also TStrList.Swap

121

120

120

121

120

119

120

119

120

122

122

122

125

122

122

122

121

126

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
List of Strings

procedure Sort(CaseSensitive: Boolean);

See also TStrList.Sort

procedure Move(IdxOld, IdxNew: Integer);

See also TStrList.Move

function IndexOf(const s: KOLWideString): Integer;

function IndexOf_NoCase(const s: KOLWideString): Integer;

function Last: KOLWideString;

procedure Put(Idx: integer; const Value: KOLWideString);

4.15 List of Files and Directories

List of Files and Directories - TDirList

Since I started talking about lists, it is natural to continue with a special kind of list - a list of file

names. KOL has an object type TDirList, which greatly simplifies the work with directories. It

encapsulates a call to API functions that view the contents of a folder and constitutes its

directory. All you need to start working with files in the entire directory is to call one of the

constructors (NewDirList or NewDirListEx), and get an object that stores the "dossier" for all

ordered files located in the specified path (and meeting the stated requirements).

So, "constructors":

NewDirList(path, filter, attr)- creates a list of directories, reading files and / or directories (this

depends on the parameter that sets the attributes of the searched file-director objects, for

example, FILE_ATTRIBUTE_DIRECTORY will read only subdirectories, FILE_ATTRIBUTE_ARCHIVE -

only files, and 0 - all names indiscriminately). The filter can only be a single filter, but it accepts

the wildcard characters '*' and '?'.

NewDirListEx(path, filters, attr) - differs from the previous constructor in that it allows you to

use several patterns, separated by the ';' character, and patterns prefixed with '^' are considered

anti-filters - to exclude names that match such patterns.

122

121

127

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
List of Files and Directories

The created object of type TDirList has the following methods and properties:

Path - a string that stores the path to the directory (always terminated by the '\' character, that

is, you can always concatenate DL.Path + DL.Names [i] to get the full path to the i-th file);

Count - returns the number of file names and subdirectories in the list;

Names[i] - returns file names by their index;

IsDirectory[i] - checks that the object with index i is a directory;

Items[i] - complete structure with information about the file / directory (it contains all the

information provided by the system, including the file size, date of its creation / modification /

last access, short name, attributes);

Clear - clears the list;

ScanDirectory(path, filter, attr) - allows you to scan the contents of another (or rescan the

contents of the same) directory, similar to the NewDirList constructor;

ScanDirectoryEx(path, filters, attr) - similar to the previous method, but according to

advanced rules, similar to the NewDirListEx constructor;

Sort(rules) - sorts names according to the specified rules. A whole array of rules is specified,

which are applied sequentially during comparison until the first rules detect differences between

names. For example, the rule sdrFoldersFirst does not distinguish between files and files, and

between directories and directories, but distinguishes only directories from files. Some rules are

used as modifiers to apply other rules, for example sdrCaseSensitive;

FileList(separator, dirs, fullpaths) - returns a list of files as a string, in which the files are

separated by the specified separator;

OnItem - an event that is triggered for each read item when scanning a directory, and allows

you to make a decision about including or not including a name in the list in accordance with the

algorithm specified in the event handler. Of course, in order for the handler for this event to be

assigned before scanning the directory, when calling the constructor, pass an empty string as a

path, then assign your handler to the object, and only then call the scanning method

ScanDirectory or ScanDirectoryEx.

Although the object described here does not allow scanning the contents of a directory for all

subdirectories, nevertheless, organizing a recursive traversal of the entire folder tree is a

completely solvable task even for a beginner. An example of such a recursive traversal can be

found in the KOL.pas module itself, in the implementation of the DirectorySize function, which

just uses the TDirList object to scan the contents of directories.

4.15.1 List of Files and Directories - Syntax

type TSortDirRules =(sdrNone, sdrFoldersFirst, sdrCaseSensitive, sdrByName,
sdrByExt, sdrBySize, sdrBySizeDescending, sdrByDateCreate, sdrByDateChanged,
sdrByDateAccessed, sdrInvertOrder);

List of rules (options) to sort directories. Rules are passed to Sort method in an array, and first

placed rules are applied first.

function NewDirList(const DirPath, Filter: KOLString; Attr: DWORD): PDirList;

Creates directory list object using easy one-string filter. If Attr = FILE_ATTRIBUTE_NORMAL, only

128

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
List of Files and Directories

files are scanned without directories. If Attr = 0, both files and directories are listed.

function NewDirListEx(const DirPath, Filters: KOLString; Attr: DWORD): PDirList;

Creates directory list object using several filters, separated by ';'. Filters starting from '^' consider

to be anti-filters, i.e. files, satisfying to those masks, are skept during scanning.

var DefSortDirRules: array[0 . . 3] of TSortDirRules =(sdrFoldersFirst,
sdrByName, sdrBySize, sdrByDateCreate);

Default rules to sort directory entries.

function DirectorySize(const Path: KOLString): I64 ;

Returns directory size in bytes as large 64 bit integer.

TDirList

TDirList(unit KOL.pas) TObj _TObj

TDirList = object(TObj)

Allows easy directory scanning. This is not visual object, but storage to simplify working with

directory content.

TDirList properties

property Items[Idx: Integer]: PFindfileData; default;

Full access to scanned items (files and subdirectories).

property IsDirectory[Idx: Integer]: Boolean;

Returns TRUE, if specified item represents a directory, not a file.

property Count: Integer;

Number of items.

property Names[Idx: Integer]: KOLString;

Full long names of directory items.

property Path: KOLString;

Path of scanned directory.

127

59

92 92

92

129

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
List of Files and Directories

TDirList methods

destructor Destroy; virtual;

Destructor. As usual, call Free method to destroy an object.

procedure Clear;

Call it to clear list of files.

procedure ScanDirectory(const DirPath, Filter: KOLString; Attr: DWord);

Call it to rescan directory or to scan another directory content (method Clear is called first).

Pass path to directory, file filter and attributes to scan directory immediately.

Note: Pass FILE_ATTRIBUTE_... constants or-combination as Attr parameter. If 0 passed, both files

and directories are listed.

procedure ScanDirectoryEx(const DirPath, Filters: KOLString; Attr: DWord);

Call it to rescan directory or to scan another directory content (method Clear is called first).

Pass path to directory, file filter and attributes to scan directory immediately.

Note: Pass FILE_ATTRIBUTE_... constants or-combination as Attr parameter.

procedure Sort(Rules: array of TSortDirRules);

Sorts directory entries. If empty rules array passed, default rules array DefSortDirRules is

used.

function FileList(const Separator: KOLString; Dirs, FullPaths: Boolean):
KOLString;

Returns a string containing all names separated with Separator. If Dirs=FALSE, only files are

returned.

procedure DeleteItem(Idx: Integer);

Allows to delete an item from the directory list (not from the disk!)

procedure AddItem(FindData: PFindFileData);

Allows to add arbitrary item to the list.

procedure InsertItem(idx: Integer; FindData: PFindFileData);

Allows to add arbitrary item to the list.

TDirList events

property OnItem: TOnDirItem;

129

129

127

128

130

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
List of Files and Directories

This event is called on reading each item while scanning directory. To use it, first create PDirList

object with empty path to scan, then assign OnItem event and call ScanDirectory with correct

path.

4.16 Tracking Changes on Disk

To track events such as changes to the contents of a directory, or modification of files in a

directory, KOL has a special TDirChange object (located in the KOLadd.pas module). Its

purpose is to trigger a designated event every time one of the changes specified by the watch

filter occurs.

Constructor:

NewDirChangeNotifier(s, filter, watchsubtree, onchange)- creates and returns an object of

type PDirChange (however, if the parameters are specified incorrectly, nil is returned). As a

filter, you can specify the names of files, directories, attributes, file size, as well as the time of

creation, modification and last access to files.

This object does not contain any essential properties or methods (perhaps you can mark the

Path property, which stores the path to the monitored directory). The event that is called when

a change is detected in the tracking area is set in the object's constructor. When it is triggered,

the handler gets the path to the directory in which the change was detected (useful for the case

when the object monitors the directory at once along with all subdirectories). In order to

determine exactly what changes have occurred, the program must store information about the

previous state of the directory, when changes occur, rescan the directory, and perform a

comparison with its own code.

4.16.1 Tracking Changes on Disk - Syntax

type PDirChange = ̂ TDirChange;

TOnDirChange = procedure (Sender: PDirChange; const Path: KOLString) of object;

Event type to define OnChange event for folder monitoring objects.

TFileChangeFilters = (fncFileName, fncDirName, fncAttributes, fncSize, fncLastWrite,
fncLastAccess, fncCreation, fncSecurity);

Possible change monitor filters.

TFileChangeFilter = set of TFileChangeFilters;

Set of filters to pass to a constructor of TDirChange object.

TDirChange = object(TObj)

Object type to monitor changes in certain folder.

129

131

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Tracking Changes on Disk

TDirChange Properties

property Handle: THandle;

Handle of file change notification object.

property Path: KOLString;

Path to monitored folder (to a root, if tree of folders is under monitoring).

property OnChange: TOnDirChange;

property OnExecute: TOnEvent;

function NewDirChangeNotifier(const Path: KOLString; Filter: TFileChangeFilter;
WatchSubtree: Boolean; ChangeProc: TOnDirChange; OnExecuteProc: TOnEvent) :
PDirChange;

Creates notification object TDirChange . If something wrong (e.g., passed directory does not

exist), nil is returned as a result. When change is notified, ChangeProc is called always in main

thread context.

(Please note, that ChangeProc can not be nil).

If empty filter is passed, default filter is used: [fncFileName..fncLastWrite].

4.17 INI Files

The program can store its settings in the registry or ini-files. Or it can store its settings in both

the registry and ini-files. Storing such configuration data in the registry allows each computer

user to have their own settings, as well as to save the settings for an application that runs in

conditions where there is no permission to directly change the contents of the (disk) media. For

example, it can be a compact disc, or a media with a blocking of the possibility of changing

information. Storing settings in an ini-file has its advantages. For example, it allows all computer

users to have the same settings that are not lost when reinstalling the operating system. In

addition, the use of ini files by applications slightly "lightens" the size of the operating system

registry.

Conclusion from the above: it is sometimes necessary to work with ini-files when developing

applications. And there is such an object in KOL.

130

132

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
INI Files

Its constructor:

OpenIniFile(s)- creates an object of type TIniFile, returning a pointer to it of type PIniFile. The

newly created object is either linked to an existing ini-file (named s), or if such a file does not

exist at the time of the call, it is created automatically.

This KOL object for working with ini-files has a feature that allows in some cases to use the same

procedure in order to ensure both loading and saving of settings. Both reading and writing of

key values are performed by the same methods of the object. What exactly to do, read or write,

determines the mode of work with the settings file (the Mode property).

Properties and methods of the TIniFile object:

Mode - operating mode: ifmRead - read, ifmWrite - write;

Filename - the name of the settings file (read-only);

Section - section of the ini-file (in the settings file, the section begins with a line containing the

section name in square brackets);

ValueInteger(key, i)- in read mode, it returns the value of the key, while the value i is used as

the default value, which is returned if there is no key in the current section; in write mode, the

same method writes a new value i for key;

ValueString(key, s) - similar to the previous method, but for the string value of the key;

ValueBoolean(key, s) - the same for a boolean value;

ValueData(key, buf, i) - similar to the previous methods, but the work is carried out with a data

block of length i bytes;

ValueDouble(key, d) - the same for a real number of type Double;

ClearAll - complete cleaning of the settings file (all sections are deleted together with all keys);

ClearKey(s) - removes the key s in the current section;

GetSectionNames(SL) - reads into the object of the list of lines (PStrList) the names of all

sections from the settings file;

GetSectionData(SL) - reads the entire contents of the current section into the object of the list

of strings.

133

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
INI Files

I will give a small example of how it is possible with the same code to ensure both recording and

saving of settings. Suppose, for example, we want to save the coordinates of the application

window in the settings file at the end of the work, and restore them from there at the beginning

of work. Let's create a method that will perform both of these operations:

procedure MyObj.ReadWriteIni (write: boolean);
var ini: PIniFile;
begin
 ini: = OpenIniFile (GetStartDir + 'my.ini');
 if write then ini.Mode: = ifmWrite;
 ini.Section = 'position';
 form.Left: = ini.ValueInteger ('Left', form.Left);
 form.Top: = ini.ValueInteger ('Top', form.Top);
 ini.Free;
end;

Now, when starting the application, we will organize a call to this method with the false

parameter, and when closing - with the true parameter. I leave it to you to figure out why this

code will do everything that is required of it, although the same operators work in both cases.

4.17.1 INI Files - Syntax

type TIniFileMode =(ifmRead, ifmWrite);

ifmRead is default mode (means "read" data from ini-file. Set mode to ifmWrite to write data to

ini-file, correspondent to TIniFile .

function OpenIniFile(const FileName: KOLString): PIniFile;

Opens ini file, creating TIniFile object instance to work with it.

TIniFile

TIniFile(unit KOL.pas) TObj _TObj

TIniFile = object(TObj)

Ini file incapsulation. The main feature is what the same block of read-write operations could be

defined (difference must be only in Mode value).

TIniFile properties

property Mode: TIniFileMode ;

ifmWrite, if write data to ini-file rather than read it.

property FileName: KOLString;

133

133

92 92

92

133

133

134

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
INI Files

Ini file name.

property Section: KOLString;

Current ini section.

TIniFile methods

destructor Destroy; virtual;

Destructor

function ValueInteger(const Key: KOLString; Value: Integer): Integer;

Reads or writes integer data value.

function ValueString(const Key: KOLString; const Value: KOLString): KOLString;

Reads or writes string data value.

function ValueDouble(const Key: KOLString; const Value: Double): Double;

Reads or writes Double data value.

function ValueBoolean(const Key: KOLString; Value: Boolean): Boolean;

Reads or writes Boolean data value.

function ValueData(const Key: KOLString; Value: Pointer; Count: Integer): Boolean;

Reads or writes data from/to buffer. Returns True, if success.

procedure ClearAll;

Clears all sections of ini-file.

procedure ClearSection;

Clears current Section of ini-file.

procedure ClearKey(const Key: KOLString);

Clears given key in current section.

procedure GetSectionNames(Names: PKOLStrList);

Retrieves section names, storing it in string list passed as a parameter. String list does not

cleared before processing. Section names are added to the end of the string list.

procedure SectionData(Names: PKOLStrList);

Read/write current section content to/from string list. (Depending on current Mode value).

134

134

133

135

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
INI Files

4.18 An Array of Bit Flags

Sometimes a program needs to organize an array of boolean flags of a large (and sometimes

very large) dimension. A specially designed TBits object (in the KOLadd module) will help you

to accomplish this task. Flags are stored in it as a single continuous array of bits (packed by 8 bits

per byte). At the same time, a sufficiently high speed of work with flags is provided, and there

are a number of quick operations that can increase the efficiency of work when performing

some traditional tasks for which such arrays are usually used.

Constructor:

NewBits - creates an empty object to store a dynamic array of flags, returns a pointer of the

PBits type to this object.

Methods and properties:

Bits[i]- access to individual flags of the array. Reading outside the array always returns false.

Writing outside the array ensures that the array grows automatically (if written to true);

Count - the number of flags in the array (read-only);

Size - the size of the flags array in bytes (also read-only);

Capacity - the maximum number of flags for the storage of which memory is reserved. If the

number of flags when adding new ones begins to exceed the reserved memory, then this value

increases, and the memory for storing the flags is reallocated. In this case, if required, the

accumulated flags are moved to a new location - in the same way as for lists. To prevent too

frequent reallocation of memory, you should set the value of the Capacity property in the

program, sufficient to work for a long time without the need to reallocate memory;

IndexOf(b) - returns the index of the first flag with the specified boolean value;

Openbit - similar to the previous one, but it returns the index of the first flag false in the array;

InstallBits(i, j, b) - for a continuous group of flags starting from index i and length j sets the

value b;

Clear - clears the array of flags, freeing the occupied memory. If the array is assumed to be

infinitely expanding to the right, then this operation is semantically equivalent to writing false to

all the flags of the array;

Copy(i, j) - creates a new object TBits on the basis of this (returning a pointer to it of the PBits

type), copying j flags into it, starting from index i;

Range(i, j) - a function equivalent to the previous one;

AssignBits(to_i, from_bits, from_i, j) - copies j flags from another TBits object from position

from_i;

SaveToStream(strm)- saves an array of flags to the stream from the current position. First, the

number of bits in the array is written, then the bits themselves;

LoadFromStream(strm)- loads an array of bits from a stream. the data must have been saved

to the stream earlier by the SaveToStream method.

136

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
An Array of Bit Flags

4.18.1 An Array of Bit Flags - Syntax

function NewBits: PBits;

Creates variable-length bits array object.

type
PBits = ̂ TBits;

TBits = object(TObj)

Variable-length bits array object. Created using function NewBits .

destructor Destroy; virtual;

property Bits[Idx: Integer]: Boolean;

property Size: Integer;

Size in bytes of the array. To get know number of bits, use property Count .

property Count: Integer;

Number of bits an the array.

property Capacity: Integer;

Number of bytes allocated. Can be set before assigning bit values to improve performance

(minimizing amount of memory allocation operations).

function Copy(From, BitsCount: Integer): PBits;

Use this property to get a sub-range of bits starting from given bit and of BitsCount bits count.

function IndexOf(Value: Boolean): Integer;

Returns index of first bit with given value (True or False).

function OpenBit: Integer;

Returns index of the first bit not set to true.

procedure Clear;

Clears bits array. Count , Size and Capacity become 0.

function LoadFromStream(strm: PStream): Integer;

Loads bits from the stream. Data should be stored in the stream earlier using SaveToStream

method. While loading, previous bits data are discarded and replaced with new one totally. In

part, Count of bits also is changed. Count of bytes read from the stream while loading data is

92

136

136

136 136 136

137

137

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
An Array of Bit Flags

returned.

function SaveToStream(strm: PStream): Integer;

Saves entire array of bits to the stream. First, Count of bits in the array is saved, then all bytes

containing bits data.

function Range(Idx, N: Integer): PBits;

Creates and returns new TBits object instance containing N bits starting from index Idx. If you

call this method, you are responsible for destroying returned object when it become not

necessary.

procedure AssignBits(ToIdx: Integer; FromBits: PBits; FromIdx, N: Integer);

Assigns bits from another bits array object. N bits are assigned starting at index ToIdx.

procedure InstallBits(FromIdx, N: Integer; Value: Boolean);

Sets new Value for all bits in range [FromIdx, FromIdx+Count-1].

function CountTrueBits: Integer;

Returns count of bits equal to TRUE.

4.19 Tree in Memory

In order to be able to efficiently store and process data organized in the form of trees in

memory, the object type TTree was created (in the KOLadd module).

Constructor:

NewTree(Parent) or NewTree (Parent, Name) - creates a new node subordinate to the

"parent" node Parent (can be nil to create the top-level node). A pointer to the created object,

of type PTree, is returned. The first constructor should be used in projects that have the

TREE_NONAME conditional compilation symbol. In this case, the tree nodes do not have a

Name property and are not intended to hold the string as the main element of the node. In the

second case, the constructor (and the corresponding Name property) uses regular strings, or

Unicode strings (WideString) can be used.

To switch to using Unicode strings, you must include the TREE_WIDE conditional compilation

symbol in your project.

Methods and properties:

136

138

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Tree in Memory

Name - node name. As noted, this property does not exist if the project uses the conditional

compilation symbol TREE_NONAME;

Data - node data. Generally speaking, any pointer or 32-bit number;

Count - the number of subordinate nodes of the next level (i.e. the number of nodes, the

immediate parent of which is this node);

Total - the total number of subordinate nodes of all lower levels (but the node itself is not

counted, as for Count);

Items[i] - access to the list of subordinate nodes (the TList object is used in the implementation

to store the list of child nodes);

Add(Node) - Adds the specified node to the end of the list of subordinate nodes. If at this

moment the node Node was subordinate (to the same, go to some other) node, then it is

preliminarily excluded from the list of its previous parent. Thus, you can combine individual

trees, or move nodes in the tree together with bunches of child nodes strung on them;

Insert(i, Node)- inserts the specified node into the list of child nodes, at position i. As with the

Add method, detaches the inserted node from its previous parent;

SwapNodes(i, j) - swaps nodes with indices i and j places;

SortByName - sorts nodes by name (the Name field must exist);

Parent - parent node;

Index - own index of the node in the list of child nodes of the parent node (Parent);

PrevSibling - returns the pointer of the previous node in the list of child nodes of its parent (or

nil if there is no such node);

NextSibling - returns the pointer of the next node in the list of child nodes of its parent (or nil);

Root - returns the pointer of the parent node of the topmost level (for a node that does not

have a parent, it itself is returned);

Level - returns the level of the node, i.e. the number of ancestors of the node in the tree

hierarchy (0 is returned for the root node);

IsParentOfNode(Node) - checks if the given node is the ancestor of the specified Node in the

tree hierarchy;

IndexOf(Node) - returns the "total" index of the child node of any nesting level Node. Note: the

total or general index is an index in the array, which is conventionally built as a sequence of all

child nodes, each of which is counted along with all its subordinate nodes. It should not be

confused with the index of a node in a sibling list;

4.19.1 Tree in Memory - Syntax

type
PTree = ̂ TTree;

TTree = object(TObj)

Object to store tree-like data in memory (non-visual).

function NewTree(AParent: PTree): PTree;

Nameless version (for case when TREE_NONAME symbol is defined).

Constructs tree node, adding it to the end of children list of the AParent. If AParent is nil, new

root tree node is created.

92

139

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Tree in Memory

function NewTree(AParent: PTree; const AName: WideString): PTree;

WideString version (for case when TREE_WIDE symbol is defined).

Constructs tree node, adding it to the end of children list of the AParent. If AParent is nil, new

root tree node is created.

function NewTree(AParent: PTree; const AName: AnsiString): PTree;

Constructs tree node, adding it to the end of children list of the AParent. If AParent is nil, new

root tree node is created.

constructor CreateTree(AParent: PTree; const AName: AnsiString);

destructor Destroy; virtual;

procedure Clear;

Destoyes all child nodes.

TTree properties

If TREE_WIDE symbol is defined:
property Name: WideString read fNodeName write fNodeName;

Default:

property Name: AnsiString read fNodeName write fNodeName;

Optional node name.

property Data: Pointer;

Optional user-defined pointer.

property Count: Integer;

Number of child nodes of given node.

property Items[Idx: Integer]: PTree;

Child nodes list items.

procedure Add(Node: PTree);

Adds another node as a child of given tree node. This operation as well as Insert can be used to

move node together with its children to another location of the same tree or even from another

tree.

Anyway, added Node first correctly removed from old place (if it is defined for it).

140

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Tree in Memory

But for simplest task, such as filling of tree with nodes, code should looking as follows:
Node := NewTree (nil, 'test of creating node without parent');
RootOfMyTree.Add(Node);

Though, this code gives the same result as:
Node := NewTree (RootOfMyTree, 'test of creatign node as a child');

procedure Insert(Before, Node: PTree);

Inserts earlier created 'Node' just before given child node 'Before' as a child of given tree node.

See also Add method.

property Parent: PTree;

Returns parent node (or nil, if there is no parent).

property Index: Integer;

Returns an index of the node in a list of nodes of the same parent (or -1, if Parent is not

defined).

property PrevSibling: PTree;

Returns previous node in a list of children of the Parent. Nil is returned, if given node is the first

child of the Parent or has no Parent.

property NextSibling: PTree;

Returns next node in a list of children of the Parent. Nil is returned, if given node is the last child

of the Parent or has no Parent at all.

property Root: PTree;

Returns root node (i.e. the last Parent, enumerating parents recursively).

property Level: Integer;

Returns level of the node, i.e. integer value, equal to 0 for root of a tree, 1 for its children, etc.

property Total: Integer;

Returns total number of children of the node and all its children counting its recursively (but

node itself is not considered, i.e. Total for node without children is equal to 0).

procedure SortByName;

Sorts children of the node in ascending order. Sorting is not recursive, i.e. only immediate

children are sorted.

procedure SwapNodes(i1, i2: Integer);

138

138

141

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Tree in Memory

Swaps two child nodes.

function IsParentOfNode(Node: PTree): Boolean;

Returns true, if Node is the tree itself or is a parent of the given node on any level.

function IndexOf(Node: PTree): Integer;

Total index of the child node (on any level under this node).

4.20 Elements of Graphics

Elements of graphics. Graphics Tools (TGraphicTool) and Drawing Canvas

(TCanvas)

When creating projects on Windows, there is at least one task that is extremely difficult to

program using a pure API. This is drawing on a DC (DC - Device Context) window or on a

temporary image in memory (bitmap, i.e. a bitmap, a common name for a bitmap) using

drawing tools - fonts, pencils and brushes ... Without object programming, this task becomes

very difficult, the code is confusing and cumbersome, it is extremely easy to make mistakes in it,

or simply "forget" to destroy any GDI tool (GDI - Graphic Device Interface). As a result, a so-

called "resource leak" can appear in the program (which can lead to the fact that all resources in

the system, the number of which is limited, run out,

To do this, both VCL and KOL create a TCanvas object (only in KOL this is an object type, and

in VCL - a class), and a set of tools encapsulating a font (font), a brush (brush) and a pencil

(pen). The VCL uses a standard approach for these three graphics tools: there is a base class

TGraphicsObject , which inherits the TFont, TBrush and TPen classes. In the KOL library, heirs

are saved, and all three types of graphic tools are represented by the same object type

TGraphicTool . Of course, they have different constructors, and the functionality of the object

and the set of supported properties are different. For this reason, you should not try, for

example, to change the FontName property for a brush - it still does nothing.

Constructors:

NewCanvas(DC) - creates a canvas object (if DC is specified, then this canvas is bound to an

existing device context, usually for an in-memory image). In real programming, it is almost never

necessary to create a canvas on your own, instead, you should use the Canvas property of the

corresponding object to draw on a bitmap or in a window, the same applies to the following

graphic tool constructors: usually you should use the Font, Brush and Pen properties of the

canvas itself or a visual object;

NewFont - creates a font (returns a PGraphicTool);

NewBrush - creates a brush (returns PGraphicTool);

NewPen - creates a pencil (returns a PGraphicTool).

151

147

147

151

151

142

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Elements of Graphics

Now about the properties and methods of the canvas. They are basically the same as in the VCL.

But there are also differences. The most important difference is how the GDI resources used by

the application are prevented from growing too much. Dealing with the subtle and complex

mechanism that implements this task in the VCL, I once spent more than one evening trying to

figure out how it works there. This is somewhat similar to automatic garbage collection, which is

sometimes used by memory managers. I decided to use a simpler algorithm for KOL. These are

all internal implementation details, and I cannot dwell on them in more detail now, but I note

that as a result, the canvas in the KOL library has a little more restrictions on its use.

For example, you should not take the canvas of a window object at an arbitrary point in time and

start drawing something on it. You should draw exactly when processing of the OnPaint message

begins (that is, when the system allows you to do it). What should you do if you need to render

some animation and update the image in the window at certain intervals? The correct solution is

to "tell" the system that the window is "damaged" and needs to be redrawn after the next time

interval (for example, by the OnTimer event in the "clock" object) (for example, call the

Invalidate method of the corresponding window object). After that, the system itself will send

the message WM_ERASEBKGND (erase the background) and WM_PAINT (draw the content) to

the window, and the OnPaint event handler will be called,

Graphical tool objects have several properties in common:

Handle - graphic object descriptor;

HandleAllocated - checks that the descriptor has been created (if you just refer to the Handle

property, the descriptor will be created, so it makes no sense to check if it is equal to zero for

this purpose);

OnChange - an event that is triggered when any properties of a graphic instrument change;

ReleaseHandle - takes ownership of the handle from the tool, returning the previous handle

(Handle);

Assign(GT) - assigns all the properties of the specified tool to this one (the type of tool must be

the same, i.e. a brush can be assigned to a brush, etc.);

Color - color.

All other properties are different, including by name.

Brush properties:

BrushBitmap - a bitmap (i.e. a picture) that is used for filling when a brush is used to fill;

BrushStyle - brush style (especially interesting are the bsSolid style - the main style for filling,

and bsClear - when the brush does not work, this style of the "transparent" brush allows you to

keep the matte intact in all drawing operations on the canvas);

BrushLineColor - line color for brush with styles (BrushStyle) of hatching with lines.

143

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Elements of Graphics

Pencil properties:

PenWidth - the width of the pencil in pixels;

PenStyle - pencil style (the degree of hatching of the line, there is also psClear, which allows you

to ignore the pencil when drawing);

PenMode - pencil drawing mode (black, white, color, inverse, etc.);

GeometricPen - sets the so-called "geometric" pencil (in contrast to the non-geometric pencil,

it allows you to set the type of outline of the line ends, see PenJoin and PenEndCap);

PenBrushStyle - brush style for a geometric pencil with shading;

PenBrushBitmap - bitmap for filling when drawing with a geometric pencil;

PenEndCap - the shape of the end of the line for a geometric pencil (round, square, flat);

PenJoin - way of connecting lines (round, boundary, middle).

Properties for the font (Font):

FontHeight - font height in pixels (an exception for a rich edit object: for it, the font height is set

in special units called twips (literally: twentieth), and equal to 1/20 of the height of a point on the

printer, or 1/1440 inch, or 1 / 10 pixels - approximate, depending on display resolution);

FontWidth - font width in pixels, if 0, then the standard font width for the current height is used,

in KOL this can be changed by narrowing or thickening the fonts to your liking;

FontPitch - font style (monospaced, proportional or default);

FontStyle - a set of font styles (bold - see also FontWeight, oblique, underlined, strikethrough);

FontCharset - character set (forced selection of one or another national character set);

FontQuality - the quality of the font drawing;

FontOrientation - the angle of rotation of the font in grades, i.e. in 1/10 degree. A value of 900

corresponds to the rotation of the font 90 degrees counterclockwise. This property works only

for TrueType fonts (for example, Arial or Times);

FontWeight - sets the exact value for font thickening. If set to a nonzero value, then the fsBold

indication, i.e. bold is ignored in font styles. The value 700 corresponds to the fsBold style, the

value 400 - to the fsNormal style, the others are in accordance with the obtained calibration

scale;

FontName - font name;

IsFontTrueType - checks if the font is a TrueType font (ie "truly scalable").

In addition, a little more detailed information on the use of fonts in visual objects. In a KOL

application (including MCK projects) it is possible not to specify a font at all, in this case the

system font (extremely large, FixedSys) will be used. In general, MCK projects use the "default"

font as the default font, the characteristics of which are recorded in the global DefFont structure.

Initially, this is MS Sans Serif with a height of 0, i.e. the height depends on the default settings for

the desktop (and the default font color is taken from the global variable DefFontColor,

originally clWindowText). If you change these variables before creating the first visual, then all

fonts (assigned by default) in the application will change.

As for KOL applications (i.e., those written without using MCK, if you don't change them at all

and don't refer to the Font property, then the FixedSys system font will be used, and if you

144

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Elements of Graphics

refer to at least one font property of the visual object, then both this visual object and all its child

objects will have their DefFont applied first, and then the specified property will be modified (if

it is modified).

And finally, I will give a list of canvas properties and methods that you may need

when programming drawing:

Handle - handle to the device context (the same DC with which the canvas object is associated).

It is provided so that it remains possible to perform any low-level operations using API functions

if there is no equivalent for them in the TCanvas object. Also, the canvas descriptor can always

be passed as a parameter to functions that are focused on working with the DC device context,

and may not know anything about the canvas, and not use its methods;

PenPos - the position of the pencil, remembers the last coordinate used in the MoveTo and

LineTo methods;

Pen - a property that provides a "pencil" object;

Brush - a property that provides a brush object;

Font - a property that provides a "font" object;

Arc(X1, Y1, X2, Y2, X3, Y3, X4, Y4) - draws an elliptical arc - along the curve of the ellipse,

limiting the ellipse to points (X1, Y1) and (X2, Y2) and drawing the curve counterclockwise

starting with point (X3, Y3) and up to point (X4, Y4), use a pencil (Pen) for drawing;

Chord(X1, Y1, X2, Y2, X3, Y3, X4, Y4) - Draws a shape bounded by an arch and a chord

connecting the ends of the arch. The bounding line is drawn using a pencil (Pen), the interior of

the resulting shape is filled with a brush (Brush);

DrawFocusRect(R) - draws a focus frame along the specified rectangle (Pen is used in XOR

mode, i.e. repeated call of the same method returns the image to its original state);

Ellipse(X1, Y1, X2, Y2) - draws an ellipse bounded by a rectangle specified by two vertices at

points (X1, Y1) and (X2, Y2). To draw the border, use a pencil (Pen), fill the inside of the ellipse

with a brush (Brush);

FillRect(R) - fills rectangle R using a brush (Brush);

FillRgn(rgn) - fills the specified region using a brush (Brush);

Floodfill(X, Y, Color, FillStyle) - filling the area either filled with Color, or vice versa, up to the

border of Color, depending on the FillStyle, with a brush (Brush);

FrameRect(R) - draws the border of the specified rectangle using a brush (Brush);

MoveTo(X, Y) - moves the pencil to point (X, Y);

LineTo(X, Y) - draws a straight line from the current position of the pencil to point (X, Y) with the

pencil tool (Pen);

Pie(X1, Y1, X2, Y2, X3, Y3, X4, Y4) - draws a sector based on an elliptical arc and centered in

the center of an ellipse inscribed in a rectangle (X1, Y1), (X2, Y2), the arc is is drawn

counterclockwise from point (X3, Y3) to point (X4, Y4), the border of the resulting shape is drawn

with a pencil (Pen), and the inner part of the sector is painted over with a brush (Brush);

Polygon(pts) - draws a polygon based on an array of specified points (the last point in the array

is connected to the first one), the border is drawn with a pencil, and the inner part is filled with a

brush;

Polyline(pts) - draws a polyline along a given array of points using a pencil;

145

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Elements of Graphics

Rectangle(X1, Y1, X2, Y2) - draws a rectangle with vertices at points (X1, Y1), (X2, Y2), the

border is drawn with a pencil, the interior is filled with a brush;

RoundRect(X1, Y1, X2, Y2, X3, Y3) - draws a rectangle with rounded corners, using an ellipse

of height Y3 and width X3 for rounding;

TextOut(X, Y, s) - draws text s from point (X, Y) with the current font (Font) and filling the

background with a brush (Brush);

ExtTextOut(X, Y, options, s, spacing) - draws text in a given rectangle using additional options

and an array of letter spacing (spacing), for more details, see the description of the ExtTextOut

API function, which this method calls;

DrawText(s, R, flags) - draws text in a rectangle using the DrawText API function and allows

you to format the text in accordance with the specified flags;

TextRect(R, X, Y, s) - draws text, limiting the drawing area to rectangle R;

TextExtent(s) - calculates the size of the text in pixels;

TextArea(s, sz, pt) - calculates the size of the rectangle and the starting point for the given text

and the current font (taking into account its orientation, i.e. rotation angle, and other properties)

and the starting point for setting in text rendering methods;

TextWidth(s) - calculates the width of the text;

TextHeight(s) - calculates the height of the text;

ClipRect - returns the current bounding rectangle of the output area;

ModeCopy - the current copy mode (for the CopyRect method);

CopyRect(Rdst, srcDC, Rsrc) - copies a rectangle from another (or the same) canvas, possibly

performing stretching / compressing or even flipping horizontally or vertically along the way,

depending on the specified coordinates of the source and destination rectangles;

OnChange - an event that fires as soon as the content of the canvas changes;

Assign(srcCanvas) - assigns the content and parameters of the specified canvas to this canvas,

including copying graphic tools;

RequiredState(i) - the method is mainly for internal use, ensures that the descriptors of the

required graphic tools are ready for drawing, the input parameter can be a combination (OR

combination) of the HandleValid, FontValid, BrushValid, PenValid and ChangingCanvas flags;

DeselectHandles - detaches all instruments from the canvas. It makes sense to use this method

if you made direct changes to the font, brush or pencil parameters through API functions, and

you need to ensure that the descriptors for these tools are recreated and attached to the canvas

with the corrected descriptors before further drawing. This function is also mainly intended for

internal use;

Pixels[X, Y] - slow access to canvas pixels (for fast pixel-by-pixel drawing on a bitmap in

memory, it is recommended to use the Scanline [] property of the TBitmap object).

As you can see, the main set of canvas properties and methods is just as rich as in the VCL. In

addition, there are a number of additions that allow you to work with Unicode text from a non-

UNICODE application (in a UNICODE application, all the usual functions for working with text are

automatically translated into their UNICODE compatible counterparts):

WTextOut(X, Y, s) - displays a Unicode string at the specified coordinates (analogous to

TextOut);

WExtTextOut(X, Y, options, s, spacing) - similar to ExtTextOut, but for Unicode text;

WDrawText(s, R, flags) - analogue of DrawText for Unicode;

WTextRect(R, X, Y, s) - analogue of TextRec for Unicode;

WTextExtent(s) - similar to TextExtent, calculates the size of text in pixels;

146

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Elements of Graphics

WTextWidth(s) - the width of the Unicode text in pixels;

WTextHeight(s) - the height of the Unicode text in pixels.

And to wrap up my discussion of canvas and the tools for painting on canvas, here are the KOL

functions for working with color. The color, just like in the VCL, is stored in a 32-bit integer

variable (of the TColor type), in which a sign (less than zero) means that this is a system color

constant corresponding to one of the system elements in the desktop setting, and the lower

three bytes - in all other cases, the values of the red, green and blue color channels are stored in

the usual color coding system R, G, B (R is the least significant byte, B is the most significant byte

in the triplet).

There are a number of color conversion functions:

Color2RGB(C) - converts the system color to RGB-encoding (if the color is already specified by

the RGB-code, then it is also returned as a result);

ColorsMix(C1, C2) - mixes two colors (arithmetic mean for each of the R, G, B channels), both

colors are preliminarily converted to RGB;

Color2RGBQuad(C) - for a given color, returns a TRGBQuad structure (used in 32-bit bitmaps to

store individual pixels, for example);

Color2Color16(C) - Returns the color as represented for a 16-bit color palette with 64K colors;

Color2Color15(C) - similar, but for a palette of 32K colors.

4.20.1 Elements of Graphics - Syntax

Constructors

function NewCanvas(DC: HDC): PCanvas;

Use to construct Canvas on base of memory DC.

function NewFont: PGraphicTool ;

Creates and returns font graphic tool object.

function NewBrush: PGraphicTool ;

Creates and returns new brush object.

Function NewPen: PGraphicTool ;

Creates and returns new pen object.

151

151

151

147

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Elements of Graphics

4.20.2 TCanvas - Syntax

TCanvas(unit KOL.pas) TObj _TObj

TCanvas = object(TObj)

Very similar to VCL's TCanvas object. But with some changes, specific for KOL: there is no

necessary to use canvases in all applications. And graphic tools objects are not created with

canvas, but only if really accessed in program. (Actually, even if paint box used, only

programmer decides, if to implement painting using Canvas or to call low level API drawing

functions working directly with DC). Therefore TCanvas has some powerful extensions: rotated

text support, geometric pen support - just by changing correspondent properties of certain

graphic tool objects (Font.FontOrientation, Pen.GeometricPen). See also additional Font

properties (Font.FontWeight, Font.FontQuality, etc.

type PCanvas = ^ TCanvas ;

type TFillStyle =(fsSurface, fsBorder);

Available filling styles. For more info see Win32 or Delphi help files.

type TFillMode =(fmAlternate, fmWinding);

Available filling modes. For more info see Win32 or Delphi help files.

TCanvas properties

property Handle: HDC;

GDI device context object handle. Never created by Canvas itself (to use Canvas with

memory bitmaps, always create DC by yourself and assign it to the Handle property of

Canvas object, or use property Canvas of a bitmap).

property PenPos: TPoint;

Position of a pen.

property Pen: PGraphicTool ;

Pen of Canvas object. Do not change its Pen. OnChange event value.

property Brush: PGraphicTool;

Brush of Canvas object. Do not change its Brush.OnChange event value.

property Font: PGraphicTool;

Font of Canvas object. Do not change its Font.OnChange event value.

property ModeCopy: TCopyMode;

92 92

92

147

221

147

147 147

151

147

147

147

148

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Elements of Graphics

Current copy mode. Is used in CopyRect method.

property Pixels[X, Y: Integer]: TColor;

Obvious.

TCanvas methods

destructor Destroy; virtual;

procedure OffsetAndRotate(Xoff, Yoff: Integer; Angle: Double);

Transforms world coordinates so that Xoff and Yoff become the coordinates of the origin (0,0)

and all further drawing is done rotated around that point by the Angle (which is given in radians)

procedure Arc(X1, Y1, X2, Y2, X3, Y3, X4, Y4: Integer); stdcall;

Draws arc. For more info, see Delphi TCanvas help.

procedure Chord(X1, Y1, X2, Y2, X3, Y3, X4, Y4: Integer); stdcall;

Draws chord. For more info, see Delphi TCanvas help.

procedure DrawFocusRect(const Rect: TRect);

Draws rectangle to represent focused visual object. For more info, see Delphi TCanvas help.

procedure Ellipse(X1, Y1, X2, Y2: Integer);

Draws an ellipse. For more info, see Delphi TCanvas help.

procedure FillRect(const Rect: TRect);

Fills rectangle. For more info, see Delphi TCanvas help.

procedure FillRgn(const Rgn: HRgn);

Fills region. For more info, see Delphi TCanvas help.

procedure FloodFill(X, Y: Integer; Color: TColor; FillStyle: TFillStyle);

Fills a figure with givien color, floodfilling its surface. For more info, see Delphi TCanvas help.

procedure FrameRect(const Rect: TRect);

Draws a rectangle using Brush settings (color, etc.). For more info, see Delphi TCanvas help.

procedure MoveTo(X, Y: Integer);

Moves current PenPos to a new position. For more info, see Delphi TCanvas help.

150

147

147

147

149

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Elements of Graphics

procedure LineTo(X, Y: Integer);

Draws a line from current PenPos up to new position. For more info, see Delphi TCanvas help.

procedure Pie(X1, Y1, X2, Y2, X3, Y3, X4, Y4: Integer); stdcall;

Draws a pie. For more info, see Delphi TCanvas help.

procedure Polygon(const Points: array of TPoint);

Draws a polygon. For more info, see Delphi TCanvas help.

procedure Polyline(const Points: array of TPoint);

Draws a bound for polygon. For more info, see Delphi TCanvas help.

procedure Rectangle(X1, Y1, X2, Y2: Integer);

Draws a rectangle using current Pen and/or Brush . For more info, see Delphi TCanvas

help.

procedure RoundRect(X1, Y1, X2, Y2, X3, Y3: Integer);

Draws a rounded rectangle. For more info, see Delphi TCanvas help.

procedure TextOutA(X, Y: Integer; const Text: AnsiString); stdcall;

Draws an ANSI text. For more info, see Delphi TCanvas help.

procedure TextOut(X, Y: Integer; const Text: KOLString); stdcall;

Draws a text. For more info, see Delphi TCanvas help.

procedure ExtTextOut(X, Y: Integer; Options: DWORD; const Rect: TRect; const Text:
AnsiString; const Spacing: array of Integer);

procedure TextRect(const Rect: TRect; X, Y: Integer; const Text: Ansistring);

Draws a text, clipping output into given rectangle. For more info, see Delphi TCanvas help.

procedure DrawText(Text: AnsiString; var Rect: TRect; Flags: DWord);

function TextExtent(const Text: KOLString): TSize;

Calculates size of a Text, using current Font settings. Does not need in Handle for

Canvas object (if it is not yet allocated, temporary device context is created and used.

procedure TextArea(const Text: KOLString; var Sz: TSize; var P0: TPoint);

Calculates size and starting point to output Text, taking into considaration all Font attributes,

147

147 147

147 147

147

147

150

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Elements of Graphics

including Orientation (only if GlobalGraphics_UseFontOrient flag is set to True, i.e. if rotated

fonts are used). Like for TextExtent , does not need in Handle (and if this last is not yet

allocated/assigned, temporary device context is created and used).

procedure WTextArea(const Text: KOLWideString; var Sz: TSize; var P0: TPoint);

Calculates size and starting point to output Text, taking into considaration all Font attributes,

including Orientation (only if GlobalGraphics_UseFontOrient flag is set to True, i.e. if rotated

fonts are used). Like for TextExtent , does not need in Handle (and if this last is not yet

allocated/assigned, temporary device context is created and used).

function TextWidth(const Text: KOLString): Integer;

Calculates text width (using TextArea).

function TextHeight(const Text: KOLString): Integer;

Calculates text height (using TextArea).

function ClipRect: TRect;

returns ClipBox. by Dmitry Zharov.

procedure WTextOut(X, Y: Integer; const WText: KOLWideString); stdcall;

Draws a Unicode text.

procedure WExtTextOut(X, Y: Integer; Options: DWORD; const Rect: TRect; const
WText: KOLWideString; const Spacing: array of Integer);

procedure WDrawText(WText: KOLWideString; var Rect: TRect; Flags: DWord);

procedure WTextRect(const Rect: TRect; X, Y: Integer; const WText: KOLWideString);

Draws a Unicode text, clipping output into given rectangle.

function WTextExtent(const WText: KOLWideString): TSize;

Calculates Unicode text width and height.

function WTextWidth(const WText: KOLWideString): Integer;

Calculates Unicode text width.

function WTextHeight(const WText: KOLWideString): Integer;

Calculates Unicode text height.

procedure CopyRect(const DstRect: TRect; SrcCanvas: PCanvas; const SrcRect:
TRect);

149 147

147

149 147

149

149

151

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Elements of Graphics

Copyes a rectangle from source to destination, using StretchBlt.

function Assign(SrcCanvas: PCanvas): Boolean;

function RequiredState(ReqState: DWORD): HDC; stdcall;

It is possible to call this method before using Handle property to pass it into API calls - to

provide valid combinations of pen, brush and font, selected into device context. This method can

not provide valid Handle - You always must create it by yourself and assign to

TCanvas.Handle property manually. To optimize assembler version, returns Handle value.

procedure DeselectHandles;

Call this method to deselect all graphic tool objects from the canvas .

TCanvas events

property OnGetHandle: TOnGetHandle;

For internal use only.

property OnChange: TOnEvent;

TCanvas fields

fIsPaintDC: Boolean;

TRUE, if DC obtained during current WM_PAINT (or WM_ERASEBKGND?) processing for a

control. This affects a way how Handle is released.

fIsAlienDC: Boolean;

TRUE if Canvas was created on base of existing DC, so DC is not beloning to the Canvas and

should not be deleted when the Canvas object is destroyed.

Fields, inherited from TObj

4.20.3 TGraphicTool - Syntax

TGraphicTool(unit KOL.pas) TObj _TObj

TGraphicTool = object(TObj)

Incapsulates all GDI objects: Pen, Brush and Font.

type PGraphicTool = ^ TGraphicTool ;

type TBrushStyle =(bsSolid, bsClear, bsHorizontal, bsVertical, bsFDiagonal,
bsBDiagonal, bsCross, bsDiagCross);

147

147

147

147

147

92

92 92

92

151

152

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Elements of Graphics

Available brush styles.

type TPenStyle =(psSolid, psDash, psDot, psDashDot, psDashDotDot, psClear,
psInsideFrame);

Available pen styles. For more info see Delphi or Win32 help files.

type TPenMode =(pmBlack, pmNotMerge, pmMaskNotPen, pmNotCopy, pmMaskPenNot, pmNot,
pmXor, pmNotMask, pmMask, pmNotXor, pmNop, pmMergePenNot, pmCopy, pmMergeNotPen,
pmMerge, pmWhite);

Available pen modes. For more info see Delphi or Win32 help files.

type TPenEndCap =(pecRound, pecSquare, pecFlat);

Avalable (for geometric pen) end cap styles.

type TPenJoin =(pjRound, pjBevel, pjMiter);

Available (for geometric pen) join styles.

type TFontStyles =(fsBold, fsItalic, fsUnderline, fsStrikeOut);

Available font styles.

type TFontStyle = set of TFontStyles ;

Font style is representing as a set of XFontStyles.

type TFontPitch =(fpDefault, fpFixed, fpVariable);

Availabe font pitch values.

type TFontName = type string;

Font name is represented as a string.

type TFontCharset = 0 . . 255;

Font charset is represented by number from 0 to 255.

type TFontQuality =(fqDefault, fqDraft, fqProof, fqNonAntialiased, fqAntialiased,
fqClearType);

Font quality.

TGraphicTool properties

property Handle: THandle;

152

153

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Elements of Graphics

Every time, when accessed, real GDI object is created (if it is not yet created). So, to prevent

creating of the handle, use HandleAllocated instead of comparing Handle with value 0.

property Color: TColor;

Color is the most common property for all Pen, Brush and Font objects, so it is placed in its

common for all of them.

property BrushBitmap: HBitmap;

Brush bitmap. For more info about using brush bitmap, see Delphi or Win32 help files.

property BrushStyle: TBrushStyle ;

Brush style.

property BrushLineColor: TColor;

Brush line color, used to represent lines in hatched brush. Default value is clBlack.

property FontHeight: Integer;

Font height. Value 0 (default) says to use system default value, negative values are to represent

font height in "points", positive - in pixels. In XCL usually positive values (if not 0) are used to

make appearance independent from different local settings.

property FontWidth: Integer;

Font width in logical units. If FontWidth = 0, then as it is said in Win32.hlp, "the aspect ratio of

the device is matched against the digitization aspect ratio of the available fonts to find the

closest match, determined by the absolute value of the difference."

property FontPitch: TFontPitch ;

Font pitch. Change it very rare.

property FontStyle: TFontStyle ;

Very useful property to control appearance.

property FontCharset: TFontCharset ;

Do not change it if You do not know what You do.

property FontQuality: TFontQuality ;

Font quality.

property FontOrientation: Integer;

It is possible to rotate text in KOL just by changing this property of a font (tenths of degree, i.e.

155

151

152

152

152

152

154

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Elements of Graphics

value 900 represents 90 degree - text written from bottom to top).

property FontWeight: Integer;

Additional font weight for bold fonts (must be 0..1000). When set to value <> 0, fsBold is added

to FontStyle . And otherwise, when set to 0, fsBold is removed from FontStyle . Value 700

corresponds to Bold, 400 to Normal.

property FontName: KOLString;

Font face name.

property PenWidth: Integer;

Value 0 means default pen width.

property PenStyle: TPenStyle ;

Pen style.

property PenMode: TPenMode ;

Pen mode.

property GeometricPen: Boolean;

True if Pen is geometric. Note, that under Win95/98 only pen styles psSolid, psNull,

psInsideFrame are supported by OS.

property PenBrushStyle: TBrushStyle ;

Brush style for hatched geometric pen.

property PenBrushBitmap: HBitmap;

Brush bitmap for geometric pen (if assigned Pen is functioning as its style = BS_PATTERN,

regadless of PenBrushStyle value).

property PenEndCap: TPenEndCap ;

Pen end cap mode - for GeometricPen only.

property PenJoin: TPenJoin ;

Pen join mode - for GeometricPen only.

property LogFontStruct: TLogFont;

by Alex Pravdin: a property to change all font structure items at once.

153 153

152

152

151

154

152

154

152

154

155

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Elements of Graphics

TGraphicTool methods

procedure Changed;

function GetHandle: THandle;

destructor Destroy; virtual;

function HandleAllocated: Boolean;

Returns True, if handle is allocated (i.e., if real GDI objet is created.

function ReleaseHandle: Integer;

Returns Handle value (if allocated), releasing it from the object (so, it is no more knows about

this handle and its HandleAllocated function returns False.

function Assign(Value: PGraphicTool): PGraphicTool;

Assigns properties of the same (only) type graphic object, excluding Handle . If assigning is

really leading to change object, procedure Changed is called.

procedure AssignHandle(NewHandle: Integer);

Assigns value to Handle property.

function IsFontTrueType: Boolean;

Returns True, if font is True Type. Requires of creating of a Handle , if it is not yet created.

TGraphicTool events

property OnChange: TOnGraphicChange;

Called, when object is changed.

4.20.4 Color Conversion - Syntax

function Color2RGB(Color: TColor): TColor;

Function to get RGB color from system color. Parameter can be also RGB color, in that case

result is just equal to a parameter.

function RGB2BGR(Color: TColor): TColor;

Converts RGB color to BGR

function ColorsMix(Color1, Color2: TColor): TColor;

Returns color, which RGB components are build as an (approximate) arithmetic mean of

correspondent RGB components of both source colors (these both are first converted from

152

155

152

155

152

152

156

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Elements of Graphics

system to RGB, and result is always RGB color). Please note: this function is fast, but can be not

too exact.

function Color2RGBQuad(Color: TColor): TRGBQuad;

Converts color to RGB, used to represent RGB values in palette entries (actually swaps R and B

bytes).

function Color2Color16(Color: TColor): WORD;

Converts Color to RGB, packed to word (as it is used in format pf16bit).

function Color2Color15(Color: TColor): WORD;

Converts Color to RGB, packed to word (as it is used in format pf15bit).

4.21 Image in Memory

Image in Memory - TBitmap

It is natural to continue the discussion of graphics with objects for representing images in RAM.

The first and one of the most important of these is the TBitmap object type. It is intended for

loading raster images from files (files with the .bmp extension), resources or other sources, for

storing them in memory and modification, for drawing (on the canvas) and for saving - to files,

streams. In the Windows environment, bitmaps (i.e., images that are stored in memory point by

point, pixel by pixel, without any compression) play an important role due to their high

processing speed. There are many API functions on Windows that are specifically designed to

work with such images. The KOL library organizes a convenient object interface to these

functions, enriching it with its extensions.

Bitmap object of type TBitmap is created by constructors

NewBitmap(W, H) - creates a "device-dependent" bitmap (DDB - Device Dependent Bitmap)

of width W and height H pixels;

NewDIBBitmap(W, H, PixelFormat) - creates a "device independent" image (DIB - Device

Independent Bitmap), specifying the pixel format (i.e., color depth, one of the values in the list:

pf1bit, pf4bit, pf8bit, pf15bit, pf16bit , pf24bit, pf32bit). The pixel format affects how many

different colors can be represented in an image and how much memory you have to allocate to

store the image.

For pf1bit, pf4bit and pf8bit formats, images with a "palette" are created, i.e. a pixel value of 1,

4, or 8 bits is actually a corresponding bit number representing the color index of a point in the

image's palette. The peculiarity of KOL when working with such images is that the palette is not

assigned by default, and if you just create such an image and draw something on its canvas, then

you will not see anything but a black square (I hope Malevich did not use KOL to become

famous?). In order for the palette to appear in the image, you must either assign it with your

157

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Image in Memory

own code (DIBPalEntries property), or load the original image from some source, for example,

from a file or from a resource.

With other formats, the situation is simpler: the pixel no longer stores the index in the palette,

but the packed color R, G, B in a certain way (in this case, unlike the structure of the TColor

variable, the B channel is stored in the low-order bits of the pixel, and R in the high-order

ones) ... An object of type TBitmap has properties that allow you to directly access pixels in

memory and modify them at will (ScanLine), this is the fastest possible way to modify images.

In any case, immediately after the image is created, it is a black rectangle of width W and height

H pixels (since memory for the image is initialized with zeros). To fill the entire image with the

desired color, it is convenient to use the canvas, and having assigned the desired brush color

(Brush.Color: = clGreen, for example), call the canvas method FillRect.

4.21.1 The methods and properties of the TBitmap object

I will list the methods and properties of the TBitmap object (it has no events), grouping them

into several main categories:

· Pixel descriptor and format

· Dimensions

· Loading and Saving

· Drawing an Image in a different Context

· Canvas and modification of your own image through it

· Direct access to pixels and image modification without canvas

· DIB image parameters

4.21.1.1 Pixel descriptor and format

HandleType - the type of the bitmap (bmDDB or bmDIB, depending on whether the image is

device dependent or independent);

PixelFormat - pixel format (used for HandleType = bmDIB, for bmDDB type stores a special

value pfDevice);

BitsPerPixel - calculates the number of bits required to represent one pixel (including for

device-specific images);

Handle - descriptor of the system graphic object of the hBitmap type. Device independent

images do not need such a descriptor, and in general, all work can potentially be done without

allocating such a descriptor. However, if you are working with an image through a canvas, a

descriptor for the image is created automatically. It is allowed to assign this property as a value a

descriptor of a bitmap (of the hBitmap type) obtained in any way, including from API functions -

in this case, the old image is lost and replaced with the assigned one, and the object becomes

the "owner" of the assigned descriptor (that is, the descriptor will be automatically destroyed

along with the object in its destructor);

HandleAllocated - checks if the handle has been allocated;

ReleaseHandle - separates the descriptor from the image, freeing it (the device-independent

image continues to exist in memory, and if it is necessary to perform any operations requiring

157

158

158

159

159

160

161

158

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Image in Memory

the presence of the descriptor, it will be allocated again). The descriptor that was detached as a

result of such an operation is freed in the sense that it is not known (or of interest) to the

TBitmap object from that point on. And then the calling code is responsible for its further fate.

For example, it can be deleted by the DeleteObject API function, or used in some other way. It

is only important to ensure that there are no leaks of such resources: all allocated GDI resources,

which include hBitmap, must be removed when they are no longer needed;

Dormant - detaches the handle from the image, and destroys it (which is equivalent to calling

DeleteObject (ReleaseHandle)), and also releases the canvas of the object (RemoveCanvas).

This method is recommended to prevent the application from allocating too many GDI

resources at the same time if you need to work alternately with a large number of bitmaps in

memory;

Assign(srcBmp) - assigns the specified image to the given image, copying it physically (unlike

VCL, where copying is postponed until the content of one of the images changes);

4.21.1.2 Dimensions

Width - width in pixels (must be greater than zero, otherwise the image is considered empty);

Height - height in pixels (similar to Width, must be greater than zero);

The width and height of the image for the TBitmap object can be changed dynamically, while

the previous image is saved (copied from the old one), when the size is increased, the new

space is filled with the color that is set for the brush of its canvas, and when the image is

reduced, it is cropped to the new size;

BoundsRect - returns a rectangle with coordinates (0, 0, Width, Height). This function is

convenient to use for passing parameters to those methods where a rectangle is required:

obviously, notation of the form
Bmp.Canvas.FillRect (Bmp.BoundsRect);

both shorter and clearer than the equivalent construction
Bmp.Canvas.FillRect (MakeRect (0, 0, Bmp.Width, Bmp.Height));

Empty - checks if the image is empty (the image is empty if its width or height is zero);

Clear - makes the image empty, freeing the resources occupied by the image;

4.21.1.3 Loading and Saving

LoadFromFile(s)- loads an image from a BMP file. This method cannot download compressed

(RLE-encoded) images;

LoadFromFileEx(s) - loads an image from a BMP file, similar to the previous method, but

understands, among other things, loading RLE-encoded images;

SaveToFile(s) - saves the image to a file in BMP format;

LoadFromStream(strm)- loads an image from the stream (from the current position in the

stream, and to the end of the image). Loading of RLE-encoded images by this method is not

performed;

LoadFromStreamEx(strm) - the same as the previous method, but also loads RLE-encoded

images;

SaveToStream(strm) - writes an image to a stream in BMP format;

159

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Image in Memory

LoadFromResourceID(inst, resID) - loads an image from an application resource or another

executable file (as determined by the inst parameter), by the numeric resource identifier resID;

LoadFromResourceName(inst, s) - loads an image from a resource by resource name;

CopyToClipboard - copies the image to the Windows clipboard;

PasteFromClipboard - pastes an image from the clipboard.

4.21.1.4 Drawing an Image in a different Context

Draw(DC, X, Y) - draws its image on the specified DC context (Device Context of hDC type)

from the specified coordinate (X, Y), without changing the scale;

StretchDraw(DC, R) - draws its image on the specified DC device context, fitting it (scaling) into

the rectangle R. Additional information: in order for the image scaling to be smooth, it is

necessary for the DC to use the API function SetStretchBltMode (DC, halftone);

DrawTransparent(DC, X, Y, C) - draws its image on the DC context similarly to the Draw

method, but the C color is considered "transparent" and skipped (that is, the previous image on

the device remains untouched at the corresponding points);

StretchDrawTransparent(DC, X, Y, C) - similar to StretchDraw, but assuming the color C is

"transparent";

DrawMasked(DC, X, Y, maskBmp) - another version of transparent drawing, in which the

maskBmp parameter of type hBitmap is used as a mask (black color in the mask corresponds to

transparent areas that will not fall into the target context). This method is faster, and allows you

to optimize performance for multiple rendering of the same image, if the mask is prepared in

advance;

StretchDrawMasked(DC, R, maskBmp) - similar to the previous one, but after applying the

mask, the image is scaled to fit the rectangle R before being displayed on the target context;

Convert2Mask(C) - converts the image into a monochrome mask, assuming C to be a

transparent color (the corresponding areas become black, all other pixels in the mask - white);

Note that the approach taken in KOL is completely contrary to what is done in this regard in the

VCL. But this is not in KOL everything is done upside down, but in the VCL, everything is inside

out. There the canvas "draws" graphical objects like TBitmap, ie. it must "know" in advance, at

least, about the existence of some abstract progenitor TPicture for all such objects, and refer to its

virtual (and in fact, abstract Draw method) to perform this operation. In KOL, neither an abstract

method nor a fictitious progenitor is needed for all "drawn" objects, and in general, to draw a

graphic object on a canvas, it is not at all necessary to have this canvas encapsulated into an

object - it is enough to have a DC descriptor, i.e. just a 32-bit value.

4.21.1.5 Canvas and modification of your own image through it

Canvas - the canvas of the image object itself, allows you to use all the capabilities of the canvas

object to draw on the image in memory. Drawing in memory is usually faster than directly on the

window context, and besides, if you draw on a window, the user will be able to observe the

drawing process itself, or at least flicker will be observed when the window is redrawn. In-

memory images are often used to prevent such flickering: the image is prepared on the TBitmap

object in memory, then quickly copied into the window context, for example, using the Draw

method of the TBitmap object;

160

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Image in Memory

RemoveCanvas - destroys the canvas object, freeing all resources and tools with it (the image

itself is not affected, because the canvas is a temporary object attached to the image when it is

necessary to draw on the image);

BkColor - background color. Generally, it syncs with the canvas brush color, if available, but can

work to fill the background even when the canvas is not being used;

Pixels[X, Y] - slow access to image pixels, requires creating a canvas and allocating a handle for

the image;

CopyRect(dstR, srcBmp, srcR) - copies the image or part of it from the specified TBitmap

object using the canvas;

Invert - inverts the image;

4.21.1.6 Direct access to pixels and image modification without canvas

ScanLine[Y] - direct access to a row of pixels with a Y coordinate, allows you to quickly perform

pixel-by-pixel processing of DIB images through pointers in memory (not applicable to DDB

images, that is, device-dependent). When working with this property, it is necessary to take into

account the size of pixels in bits (for example, for the pf1bit format, 8 pixels are located in one

byte, and for the pf24bit format, three bytes are used to store one pixel). If you need to further

increase the speed of accessing pixel lines, remember that you cannot simply add the resulting

pointer for the top line ScanLine [0] with the size of the ScanLineSize pixel line to get the

beginning of the next pixel line. The fact is that in Windows, DIB images in memory are stored

upside down: first comes the bottom line, then the penultimate line, and at the very end - the

top one.

ScanLineSize - returns the size of a pixel line in bytes (taking into account alignment to a double

word, i.e. in Windows for an image of any size and any pixel format, the length of a pixel line

must contain an integer of 4-byte words);

DibPixels[X, Y] - this property provides a slightly faster way to access image pixels than Pixels,

and does not require using a canvas and creating a descriptor (but this method is still slower

than through ScanLine, and especially slow for pf15bit and pf16bit formats, for which you need

to convert the color of the pixel to TColor and vice versa);

DibDrawRect(DC, X, Y, R) - allows you to draw a DIB image (or part of it enclosed by rectangle

R) on the target context without having to create a Handle for this operation or attach a canvas.

Drawing directly is no slower than the Draw operation (and may even be faster if the device

format matches the image format, so no pixel format conversion will be performed during the

drawing process);

RotateRight - rotates the DIB image clockwise by 90 degrees, as a result, the width becomes

the same height, and the height - the same height. This operation, like all other rotations, is

performed via direct pixel access (ScanLine), and is very fast;

RotateLeft - rotates the image 90 degrees counterclockwise. There are some more methods for

rotating an image, but for a specific pixel format (RotateRightMono, RotateLeftMono,

RotateRight4bit, RotateLeft4bit, RotateRight8bit, RotateLeft8bit, RotateRight16bit,

RotateLeft16bit, RotateRightTrueColor, RotateLeftTrueColor);

FlipVertical - quickly flips the DIB image vertically;

FlipHorizontal - quickly flips the DIB image horizontally;

161

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Image in Memory

4.21.1.7 DIB image parameters

DibPalEntryCount - returns the number of colors in the palette, depending on the bit depth of

the pixel (only for formats that have a palette: pf1bit, pf4bit, pf8bit);

DibPalEntries[i] - access to the colors of the palette by index, allows you to change the palette

for DIB images (formats 1, 4 or 8 bits per pixel);

DibPalNearestEntry(C) - finds in the palette the index of the color closest to the color specified

by the C parameter;

DibBits - the pointer to the memory that stores the pixels of the images is intended for internal

use (can be used by professionals for their own purposes);

DibSize - the size of the memory array for storing pixels;

DibHeader - access to the internal header of the DIB-image, like the two previous properties, is

intended mainly for internal use;

The KOL library contains a number of additional functions for working with bitmaps. For

example, the following set of functions allows you to load an image from resources, modifying it

in such a way that its standard colors are automatically adjusted to the current settings of the

desktop system colors:

LoadMappedBitmap(Inst, ResID, Map) - loads an image from a resource (by the numeric

resource identifier), replacing colors along the way in accordance with those specified in the

Map array. Returns a handle to the loaded bitmap of type hBitmap;

LoadMappedBitmapEx(MasterObj, Inst, ResName, Map)- similar to the previous one, but

loads by resource name and understands any pixel formats in resources. In addition, if the

MasterObj object is specified, then it becomes the owner of the loaded descriptor, and when

this object is destroyed, the loaded descriptor will also be automatically destroyed;

CreateMappedBitmap(Inst, Bmp, Flags, ColorMap, i) - performs color replacement for an

existing bitmap;

CreateMappedBitmapEx(Inst, ResName, Flags, ColorMap, i) - the same as the previous

function, but the image is first loaded from the resource by name;

LoadBmp(Instance: Integer; Rsrc: PChar; MasterObj: PObj) - loads an image from a

resource, adding it to the list of objects for deletion along with the MasterObj object;

4.21.2 Image in Memory - Syntax

TBitmap(unit KOL.pas) TObj _TObj

TBitmap = object(TObj)

Bitmap incapsulation object.

type PCanvas = ̂ TCanvas ;

type TPixelFormat =(pfDevice, pf1bit, pf4bit, pf8bit, pf15bit, pf16bit, pf24bit,
pf32bit, pfCustom);

Available pixel formats.

92 92

92

161

162

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Image in Memory

type TBitmapHandleType =(bmDIB, bmDDB);

Available bitmap handle types.

function DesktopPixelFormat: TPixelFormat ;

Returns the pixel format correspondent to current desktop color resolution. Use this function to

decide which format to use for converting bitmap, planned to draw transparently using

TBitmap.DrawTransparent or TBitmap.StretchDrawTransparent methods.

function NewBitmap(W, H: Integer): PBitmap;

Creates bitmap object of given size. If it is possible, do not change its size (Width and Heigth)

later - this can economy code a bit. See TBitmap .

function NewDIBBitmap(W, H: Integer; PixelFormat: TPixelFormat): PBitmap;

Creates DIB bitmap object of given size and pixel format. If it is possible, do not change its size

(Width and Heigth) later - this can economy code a bit. See TBitmap .

TBitmap properties

property Width: Integer;

Width of bitmap. To make code smaller, avoid changing Width or Height after bitmap is

created (using NewBitmap) or after it is loaded from file, stream of resource.

property Height: Integer;

Height of bitmap. To make code smaller, avoid changing Width or Height after bitmap is

created (using NewBitmap) or after it is loaded from file, stream of resource.

property BoundsRect: TRect;

Returns rectangle (0,0,Width ,Height).

property Empty: Boolean;

Returns True if Width or Height is 0.

property Handle: HBitmap;

Handle of bitmap. Created whenever property accessed. To check if handle is allocated (without

allocating it), use HandleAllocated property.

property HandleAllocated: Boolean;

Returns True, if Handle already allocated.

property HandleType: TBitmapHandleType ;

161

166 166

161

161

161

162

162

162

162

162 162

162 162

162

162

162

163

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Image in Memory

bmDIB, if DIB part of image data is filled and stored internally in TBitmap object. DIB image

therefore can have Handle allocated, which require resources. Use HandleAllocated

funtion to determine if handle is allocated and Dormant method to remove it, if You want to

economy GDI resources. (Actually Handle needed for DIB bitmap only in case when

Canvas is used to draw on bitmap surface). Please note also, that before saving bitmap to file

or stream, it is converted to DIB.

property PixelFormat: TPixelFormat ;

Current pixel format. If format of bitmap is unknown, or bitmap is DDB, value is pfDevice. Setting

PixelFormat to any other format converts bitmap to DIB, back to pfDevice converts bitmap to

DDB again. Avoid such conversations for large bitmaps or for numerous bitmaps in your

application to keep good performance

.

property Canvas: PCanvas ;

Canvas can be used to draw onto bitmap. Whenever it is accessed, handle is allocated for

bitmap, if it is not yet (to make it possible to select bitmap to display compatible device context).

property BkColor: TColor;

Used to fill background for Bitmap, when its width or height is increased. Although this value

always synchronized with Canvas.Brush.Color, use it instead if You do not use Canvas for

drawing on bitmap surface.

property Pixels[X, Y: Integer]: TColor;

Allows to obtain or change certain pixels of a bitmap. This method is both for DIB and DDB

bitmaps, and leads to allocate handle anyway. For DIB bitmaps, it is possible to use property

DIBPixels [] instead, which is much faster and does not require in Handle .

property ScanLineSize: Integer;

Returns size of scan line in bytes. Use it to measure size of a single ScanLine . To calculate

increment value from first byte of ScanLine to first byte of next ScanLine , use difference

 Integer(ScanLine [1]-ScanLine [0])

(this is because bitmap can be oriented from bottom to top, so step can be negative).

property ScanLine[Y: Integer]: Pointer;

Use ScanLine to access DIB bitmap pixels in memory to direct access it fast. Take in attention,

that for different pixel formats, different bit counts are used to represent bitmap pixels. Also do

not forget, that for formats pf4bit and pf8bit, pixels actually are indices to palette entries, and for

formats pf16bit, pf24bit and pf32bit are actually RGB values (for pf16bit B:5-G:6-R:5, for pf15bit

B:5-G:5-R:5 (high order bit not used), for pf24bit B:8-G:8-R:8, and for pf32bit high order byte of

TRGBQuad structure is not used).

property DIBPixels[X, Y: Integer]: TColor;

162 162

166

162

163

161

161

163

163 162

163

163 163

163 163

164

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Image in Memory

Allows direct access to pixels of DIB bitmap, faster then Pixels [] property. Access to read is

slower for pf15bit, pf16bit formats (because some conversation needed to translate packed RGB

color to TColor). And for write, operation performed most slower for pf4bit, pf8bit (searching

nearest color required) and fastest for pf24bit, pf32bit and pf1bit.

property DIBPalEntryCount: Integer;

Returns palette entries count for DIB image. Always returns 2 for pf1bit, 16 for pf4bit, 256 for

pf8bit and 0 for other pixel formats.

property DIBPalEntries[Idx: Integer]: TColor;

Provides direct access to DIB palette.

property DIBBits: Pointer;

This property is mainly for internal use.

property DIBSize: Integer;

Size of DIBBits array.

property DIBHeader: PBitmapInfo;

TBitmap methods

procedure Clear;

Makes bitmap empty, setting its Width and Height to 0.

procedure LoadFromFile(const Filename: KOLString);

Loads bitmap from file (LoadFromStream used).

function LoadFromFileEx(const Filename: KOLString): Boolean;

Loads bitmap from a file. If necessary, bitmap is RLE-decoded. Code given by Vyacheslav A.

Gavrik.

procedure SaveToFile(const Filename: KOLString);

Stores bitmap to file (SaveToStream used).

procedure CoreSaveToFile(const Filename: KOLString);

Stores bitmap to file (CoreSaveToStream used).

procedure RLESaveToFile(const Filename: KOLString);

Stores bitmap to file (CoreSaveToStream used).

163

164

162 162

165

165

165

165

165

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Image in Memory

procedure LoadFromStream(Strm: PStream);

Loads bitmap from stream. Follow loading, bitmap has DIB format (without handle allocated). It

is possible to draw DIB bitmap without creating handle for it, which can economy GDI resources.

function LoadFromStreamEx(Strm: PStream): Boolean;

Loads bitmap from a stream. Difference is that RLE decoding supported. Code given by

Vyacheslav A. Gavrik.

procedure SaveToStream(Strm: PStream);

Saves bitmap to stream. If bitmap is not DIB, it is converted to DIB before saving.

procedure CoreSaveToStream(Strm: PStream);

Saves bitmap to stream using CORE format with RGBTRIPLE palette and with

BITMAPCOREHEADER as a header. If bitmap is not DIB, it is converted to DIB before saving.

procedure RLESaveToStream(Strm: PStream);

Saves bitmap to stream using CORE format with RGBTRIPLE palette and with

BITMAPCOREHEADER as a header. If bitmap is not DIB, it is converted to DIB before saving.

procedure LoadFromResourceID(Inst: DWORD; ResID: Integer);

Loads bitmap from resource using integer ID of resource. To load by name, use

LoadFromResurceName. To load resource of application itself, pass hInstance as first parameter.

This method also can be used to load system predefined bitmaps, if 0 is passed as Inst

parameter:

OBM_BTNCORNERS OBM_REDUCE

OBM_BTSIZE OBM_REDUCED

OBM_CHECK OBM_RESTORE

OBM_CHECKBOXES OBM_RESTORED

OBM_CLOSE OBM_RGARROW

OBM_COMBO OBM_RGARROWD

OBM_DNARROW OBM_RGARROWI

OBM_DNARROWD OBM_SIZE

OBM_DNARROWI OBM_UPARROW

OBM_LFARROW OBM_UPARROWD

OBM_LFARROWD OBM_UPARROWI

OBM_LFARROWI OBM_ZOOM

OBM_MNARROW OBM_ZOOMD

166

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Image in Memory

procedure LoadFromResourceName(Inst: DWORD; ResName: PKOLChar);

Loads bitmap from resurce (using passed name of bitmap resource.

function Assign(SrcBmp: PBitmap): Boolean;

Assigns bitmap from another. Returns False if not success. Note: remember, that Canvas is

not assigned - only bitmap image is copied. And for DIB, handle is not allocating due this

process.

function ReleaseHandle: HBitmap;

Returns Handle and releases it, so bitmap no more know about handle. This method does not

destroy bitmap image, but converts it into DIB. Returned Handle actually is a handle of copy

of original bitmap. If You need not in keping it up, use Dormant method instead.

procedure Dormant;

Releases handle from bitmap and destroys it. But image is not destroyed and its data are

preserved in DIB format. Please note, that in KOL, DIB bitmaps can be drawn onto given device

context without allocating of handle. So, it is very useful to call Dormant preparing it using

Canvas drawing operations - to economy GDI resources.

function BitsPerPixel: Integer;

Returns bits per pixel if possible.

procedure Draw(DC: HDC; X, Y: Integer);

Draws bitmap to given device context. If bitmap is DIB, it is always drawing using

SetDIBitsToDevice API call, which does not require bitmap handle (so, it is very sensible to call

Dormant method to free correspondent GDI resources).

procedure StretchDraw(DC: HDC; const Rect: TRect);

Draws bitmap onto DC, stretching it to fit given rectangle Rect.

procedure DrawTransparent(DC: HDC; X, Y: Integer; TranspColor: TColor);

Draws bitmap onto DC transparently, using TranspColor as transparent. See function

PixelFormat also.

procedure StretchDrawTransparent(DC: HDC; const Rect: TRect; TranspColor: TColor);

Draws bitmap onto given rectangle of destination DC (with stretching it to fit Rect) -

transparently, using TranspColor as transparent. See function DesktopPixelFormat also.

procedure DrawMasked(DC: HDC; X, Y: Integer; Mask: HBitmap);

Draws bitmap to destination DC transparently by mask. It is possible to pass as a mask handle of

another TBitmap, previously converted to monochrome mask using Convert2Mask method.

163

162

162

166

163

166

163

162

167

167

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Image in Memory

procedure StretchDrawMasked(DC: HDC; const Rect: TRect; Mask: HBitmap);

Like DrawMasked , but with stretching image onto given rectangle.

procedure Convert2Mask(TranspColor: TColor);

Converts bitmap to monochrome (mask) bitmap with TranspColor replaced to clBlack and all

other ones to clWhite. Such mask bitmap can be used to draw original bitmap transparently, with

given TranspColor as transparent. (To preserve original bitmap, create new instance of TBitmap

and assign original bitmap to it). See also DrawTransparent and StretchDrawTransparent

methods.

procedure Invert;

Obvious.

procedure RemoveCanvas;

Call this method to destroy Canvas and free GDI resources.

function DIBPalNearestEntry(Color: TColor): Integer;

Returns index of entry in DIB palette with color nearest (or matching) to given one.

procedure DIBDrawRect(DC: HDC; X, Y: Integer; const R: TRect);

This procedure copies given rectangle to the target device context, but only for DIB bitmap

(using SetDIBBitsToDevice API call).

procedure RotateRight;

Rotates bitmap right (90 degree). Bitmap must be DIB. If You definitevely know format of a

bitmap, use instead one of methods RotateRightMono , RotateRight4bit ,

RotateRight8bit , RotateRight16bit or RotateRightTrueColor - this will economy code.

But if for most of formats such methods are called, this can be more economy just to call always

universal method RotateRight.

procedure RotateLeft;

Rotates bitmap left (90 degree). Bitmap must be DIB. If You definitevely know format of a

bitmap, use instead one of methods RotateLeftMono , RotateLeft4bit , RotateLeft8bit ,

RotateLeft16bit or RotateLeftTrueColor - this will economy code. But if for most of

formats such methods are called, this can be more economy just to call always universal method

RotateLeft.

procedure RotateRightMono;

Rotates bitmap right, but only if bitmap is monochrome (pf1bit).

166

166 166

163

167 168

168 168 168

167 168 168

168 168

168

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Image in Memory

procedure RotateLeftMono;

Rotates bitmap left, but only if bitmap is monochrome (pf1bit).

procedure RotateRight4bit;

Rotates bitmap right, but only if PixelFormat is pf4bit.

procedure RotateLeft4bit;

Rotates bitmap left, but only if PixelFormat is pf4bit.

procedure RotateRight8bit;

Rotates bitmap right, but only if PixelFormat is pf8bit.

procedure RotateLeft8bit;

Rotates bitmap left, but only if PixelFormat is pf8bit.

procedure RotateRight16bit;

Rotates bitmap right, but only if PixelFormat is pf16bit.

procedure RotateLeft16bit;

Rotates bitmap left, but only if PixelFormat is pf16bit.

procedure RotateRightTrueColor;

Rotates bitmap right, but only if PixelFormat is pf24bit or pf32bit.

procedure RotateLeftTrueColor;

Rotates bitmap left, but only if PixelFormat is pf24bit or pf32bit.

procedure FlipVertical;

Flips bitmap vertically

procedure FlipHorizontal;

Flips bitmap horizontally

procedure CopyRect(const DstRect: TRect; SrcBmp: PBitmap; const SrcRect: TRect);

It is possible to use Canvas.CopyRect for such purpose, but if You do not want use TCanvas , it

is possible to copy rectangle from one bitmap to another using this function.

function CopyToClipboardAsDIB: Boolean;

Copies bitmap to clipboard, converting it to DIB format first.

163

163

163

163

163

163

163

163

161

169

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Image in Memory

function CopyToClipboard: Boolean;

Copies bitmap to clipboard. When Handle = 0, CLIPBOARD is emptied!!!

function PasteFromClipboard: Boolean;

Takes CF_DIB format bitmap from clipboard and assigns it to the TBitmap object.

function LoadMappedBitmap(hInst: THandle; BmpResID: Integer; const Map: array of
TColor): HBitmap;

This function can be used to load bitmap and replace some it colors to desired ones. This

function especially useful when loaded by the such way bitmap is used as toolbar bitmap - to

replace some original colors to system default colors. To use this function properly, the bitmap

should be prepared as 16-color bitmap, which uses only system colors. To do so, create a new

16-color bitmap with needed dimensions in Borland Image Editor and paste a bitmap image,

copied in another graphic tool, and then save it. If this is not done, bitmap will not be loaded

correctly!

function LoadMappedBitmapEx(MasterObj: PObj ; hInst: THandle; BmpResName:
PKOLChar; const Map: array of TColor): HBitmap;

by Alex Pravdin: like LoadMappedBitmap , but much powerful. It uses

CreateMappedBitmapEx , so it understands any bitmap color format, including pf24bit. Also,

LoadMappedBitmapEx provides auto-destroying loaded resource when MasterObj is destroyed.

function CreateMappedBitmap(Instance: THandle; Bitmap: Integer; Flags: UINT;
ColorMap: PColorMap; NumMaps: Integer): HBitmap; stdcall;

Creates mapped bitmap replacing colors correspondently to the ColorMap (each pare of colors

defines color replaced and a color used for replace it in the bitmap). See also

CreateMappedBitmapEx .

function CreateMappedBitmapEx(Instance: THandle; BmpRsrcName: PKOLChar; Flags:
Cardinal; ColorMap: PColorMap; NumMaps: Integer): HBitmap;

162

92

169

169

169

170

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Pictogram

4.22 Pictogram

Pictogram - TIcon

Another no less important graphic object is a pictogram (in computer slang - "icon"). Icons in

Windows applications are used as icons to identify windows, to distinguish between different

buttons on toolbars, and for an immeasurable number of purposes. You can also work with icons

through API functions, but in many cases it is convenient to use the TIcon object for this.

Constructor:

NewIcon - creates an empty TIcon object and returns a pointer to it of the PIcon type;

Basic methods and properties of the icon object:

Handle - GDI handle to the icon. For a non-empty object, the icon is always not 0. To assign a

descriptor of type hIcon or hCursor to an object, it must be assigned to this property;

ShareIcon - determines whether the descriptor is "shared": the shared resource of the icon is

not considered to belong to the object, and is not destroyed when the object is destroyed;

Empty - checks that the icon is empty (that is, it is not loaded into the object, and the descriptor

is 0);

Clear - clears the object (makes it empty), while if there was a descriptor and it was not shared

(ShareIcon), then the descriptor is destroyed, freeing the corresponding GDI resource in the

system;

Size - for square icons, shows their size (height and width).

Before loading an icon from external sources (file, resource), this value can be assigned a

nonzero value so that when loading an icon that has several image options, the image of the

specified size is loaded (by default, the 32x32 icon is always loaded first, and secondly - as close

as possible to her in size);

Width - the width of the icon (in order for the width and height to differ, the ICON_DIFF_WH

conditional compilation symbol should be included in the project option);

Height - the height of the pictogram (the remark about the symbol of conditional compilation is

also true for the height);

HotSpot - the coordinates of the point, which is used to store the "touch point" for cursors

(hCursor can also be stored and managed by the TIcon object, since in fact they are no

different);

Draw(DC, X, Y) - Draws an icon image on the specified DC context. Drawing a transparent

pictogram is always done in a "transparent" manner; Areas corresponding to transparent areas

on the target canvas are not affected.

StretchDraw(DC, R) - draws an icon with scaling, fitting it into the specified rectangle;

LoadFromFile(s) - loads an icon from a file;

LoadFromStream(strm) - loads an icon from a data stream;

SaveToFile(s) - saves the icon in the specified file;

SaveToStream(strm) - saves the icon in the data stream;

LoadFromResourceID(inst, resID, sz) - loads an icon from a resource by a numeric resource

identifier;

171

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Pictogram

LoadFromResourceName(inst, resName, sz) - loads an icon from a resource by resource

name;

LoadFromExecutable(s, i) - loads an icon from the specified executable file (.exe, .dll, etc.),

according to the resource number of icons in this file (the global function GetFileIconCount (s)

returns the number of resources of icons in the specified executable file);

ConvertToBitmap - creates an hBitmap image based on the icon and returns it;

In addition, there are a number of global functions that allow you to work (load and save)

groups of icons as one icon with several image options:

SaveIcons2Stream(icons, strm) - saves the icons specified in the icons array to the specified

stream as a single icon with several image options. The array of icons should contain several

icons of different sizes;

SaveIcons2File(icons, s) - similar to the previous one, but the multiple icon resource is saved in

the file;

And one more global function for loading an icon:

LoadImgIcon(resName, sz) - loads an icon from the resource of the application itself by the

name of the resource, as close as possible to the specified size (if 0, then the 32x32 icon is

loaded by default);

4.22.1 Pictogram - Syntax

TIcon(unit KOL.pas) TObj _TObj

TIcon = object(TObj)

Object type to incapsulate icon or cursor image.

function NewIcon: PIcon;

Creates new icon object, setting its Size to 32 by default. Created icon is Empty.

TIcon properties

property Size: Integer;

Icon dimension (width and/or height, which are equal to each other always).

property Handle: HIcon;

Windows icon object handle.

property Empty: Boolean;

Returns True if icon is Empty.

property ShareIcon: Boolean;

92 92

92

172

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Pictogram

True, if icon object is shared and can not be deleted when TIcon object is destroyed (set this flag

is to True, if an icon is obtained from another TIcon object, for example).

property HotSpot: TPoint;

Hot spot point - for cursors.

TIcon methods

procedure SetHandleEx(NewHandle: HIcon);

Set Handle without changing Size (Width/Height).

procedure Clear;

Clears icon, freeing image and allocated GDI resource (Handle).

procedure Draw(DC: HDC; X, Y: Integer);

Draws icon onto given device context. Icon always is drawn transparently using its transparency

mask (stored internally in icon object).

procedure StretchDraw(DC: HDC; Dest: TRect);

Draws icon onto given device context with stretching it to fit destination rectangle. See also

Draw .

procedure LoadFromStream(Strm: PStream);

Loads icon from stream. If stream contains several icons (of different dimentions), icon with the

most appropriate size is loading.

procedure LoadFromFile(const FileName: KOLString);

Load icon from file. If file contains several icons (of different dimensions), icon with the most

appropriate size is loading.

procedure LoadFromResourceID(Inst: Integer; ResID: Integer; DesiredSize: Integer);

Loads icon from resource. To load system default icon, pass 0 as Inst and one of followin values

as ResID:

IDI_APPLICATION Default application icon.

IDI_ASTERISK Asterisk (used in informative messages).

IDI_EXCLAMATION Exclamation point (used in warning messages).

IDI_HAND Hand-shaped icon (used in serious warning messages).

171 171

171

172

173

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Pictogram

IDI_QUESTION Question mark (used in prompting messages).

IDI_WINLOGO Windows logo.

It is also possible to load icon from resources of another module, if pass instance handle of

loaded module as Inst parameter.

procedure LoadFromResourceName(Inst: Integer; ResName: PKOLChar; DesiredSize:
Integer);

Loads icon from resource. To load own application resource, pass hInstance as Inst parameter. It

is possible to load resource from another module, if pass its instance handle as Inst.

procedure LoadFromExecutable(const FileName: KOLString; IconIdx: Integer);

Loads icon from executable (exe or dll file). Always default sized icon is loaded. It is possible also

to get know how much icons are contained in executable using gloabl function

GetFileIconCount . To obtain icon of another size, try to load given executable and use

LoadFromResourceID method.

procedure SaveToStream(Strm: PStream);

Saves single icon to stream. To save icons with several different dimensions, use global

procedure SaveIcons2Stream .

procedure SaveToFile(const FileName: KOLString);

Saves single icon to file. To save icons with several different dimensions, use global procedure

SaveIcons2File .

function Convert2Bitmap(TranColor: TColor): HBitmap;

Converts icon to bitmap, returning Windows GDI bitmap resource as a result. It is possible later

to assign returned bitmap handle to Handle property of TBitmap object to use features

of TBitmap . Pass TranColor to replace transparent area of icon with given color.

Global Functions

procedure SaveIcons2Stream(const Icons: array of PIcon; Strm: PStream);

174

172

173

174

171 161

161

174

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Pictogram

Saves several icons (of different dimentions) to stream.

function SaveIcons2StreamEx(const BmpHandles: array of HBitmap; Strm: PStream):
Boolean;

Saves icons creating it from pairs of bitmaps and their masks. BmpHandles array must contain

pairs of bitmap handles, each pair of color bitmap and mask bitmap of the same size.

procedure SaveIcons2File(const Icons: array of PIcon; const FileName: KOLString);

Saves several icons (of different dimentions) to file. (Single file with extension .ico can contain

several different sized icon images to use later one with the most appropriate size).

function GetFileIconCount(const FileName: KOLString): Integer;

Returns number of icon resources stored in given (executable) file.

function LoadImgIcon(RsrcName: PKOLChar; Size: Integer): HIcon;

Loads icon of specified size from the resource.

function FileIconSystemIdx(const Path: KOLString): Integer;

Returns index of the index of the system icon correspondent to the file or directory in system

icon image list.

function FileIconSysIdxOffline(const Path: KOLString): Integer;

The same as FileIconSystemIdx , but an icon is calculated for the file as it were offline (it is

possible to get an icon for file even if it is not existing, on base of its extension only).

function DirIconSysIdxOffline(const Path: KOLString): Integer;

The same as FileIconSysIdxOffline , but for a folder rather then for a file.

4.23 List of Images

List of images (TImageList)

To store a set of icons of the same size, there is a special GDI object in Windows, which is called

so, image list - a list of images. The TImageList object represents its object encapsulation.

Constructor:

NewImageList - creates an empty list of images.

174

174

175

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
List of Images

4.23.1 The methods and properties of the TImageList object

Let's consider a set of methods and properties of an image list:

· Descriptor and parameters

· Image manipulation: add, remove, load

· Accessing images

· Drawing

4.23.1.1 Descriptor and parameters

Handle - system descriptor of the GDI object of the image list;

ShareImages - a flag that controls the sharing of the descriptor between this object and other

owners (if true, then the descriptor does not belong to this object, and will not be destroyed

when the object is destroyed);

Colors - the color format of the images stored in the list. After adding images to the list, the

format can no longer be changed (for this property to be changed, the list must be empty);

Masked - specifies whether the list of images uses a transparency mask for images (if not, then

all images in the list are not transparent). Similar to Colors, this property can only be changed for

an empty list;

ImgWidth - the width of each individual image stored in the list, in pixels;

ImgHeight - the height of each image in the list. Both the height and width of an individual

image can also be set only before adding the first image to the list;

AllocBy - determines how many more images will be backed up in the list when the current

reserve is exhausted. This property is passed to the system at the moment of creating a

descriptor for the list of images, and it is no longer possible to change it after adding at least

one image;

4.23.1.2 Image manipulation: add, remove, load

Add(bmp, msk) - adds a bitmap with the specified mask (both parameters are descriptors of

bitmap types of hBitmap type);

AddMasked(bmp, C) - adds a bmp image (of the hBitmap type), building a mask for it by the

image itself (assuming the color C in the image is transparent);

AddIcon(ico) - adds an icon to the list (the parameter is a descriptor of an icon of the hIcon

type);

Delete(i) - removes the image with index i from the list (all other images in the list are shifted

one position to the left, i.e. their indices are reduced);

LoadBitmap(resName, C) - the main method for loading images from the resources of the

application itself, the C parameter is used as the color of the transparent area (in the image

resource, one of the colors should be used to identify transparent areas);

LoadFromFile(s, C, imgType)- loads images from the specified file. Similar to the LoadBitmap

method, the C color is used to build a transparency mask for masked lists. The last parameter

sets the type of images (for icons and cursors, transparency is taken from the loaded images

themselves, and the C parameter is ignored);

LoadSystemIcons(smallicons) - Associates the list of images with the global system icon list,

which stores, among other things, icons corresponding to the file types registered in the system.

175

175

176

176

176

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
List of Images

In fact, although the name of this method begins with the word Load, there is no physical

"loading" of the images. Simply referring to the images of the given list leads to referring to the

icons of the system list. The system list cannot be modified (access is possible in the "read-only"

mode).

To get information about which icons from the list correspond to which types of files, you need

to use either API functions or KOL functions (FileIconSystemIdx, FileIconSysIdxOffline,

DirIconSysIdxOffline);

4.23.1.3 Accessing images

Count- the number of images in the list;

Bitmap - returns the system descriptor of the bitmap (of the hBitmap type), in which the system

stores all the images in the list (from left to right);

Mask - returns the hBitmap of the monochrome bitmap mask for all images in the list;

ImgRect(i) - returns a rectangle that stores the image indicated by the index i in the common

bitmap;

Overlay[i] - manages overdraw images (or modifiers). Index i = 1..15 allows to set the overlay

number for each overlay modifier, assigning a value to this property informs the image with

which index in the list of images the overlay is located. These modifiers can be used when

displaying element states in the list view and tree view visual objects;

4.23.1.4 Drawing

BkColor - background color, used for opaque drawing of transparent images from the list, in

place of transparent areas;

BlendColor - the color that is blended with the color of the images, in the so-called "blended"

drawing of the image;

DrawingStyle - style of drawing images from the list (built as a combination of possible flags

"transparent", "by mask", "with 50% BlendColor blending", "25% BlendColor blending");

Draw(DC, X, Y, i) - draws an image with index i from the list to the specified DC context from

the specified coordinate, while drawing the current drawing style DrawingStyle is used;

StretchDraw(DC, R, i) - similar to the previous one, but drawing is performed with scaling, and

the image "fits" into the specified rectangle;

Running a little ahead, it should be said that the Mirror Classes Kit has a mirror component for

representing a TImageList (the mirror is called TKOLImageList). You can put it on the form

from the palette of components, and set its properties. As well as for the VCL TImageList

component, double-clicking on this component calls its editor, where you can edit the list of

images by loading the desired images from the image files.

An important feature of the mirrored TKOLImageList object is its ability to save application size.

The general picture for the list of icons is saved in the application resources in the most compact

format, in which all the colors present are preserved. That is, even if you used True Color for

thumbnails, but the total number of colors does not exceed 256, 16 or 2, then the corresponding

format 8, 4 or 2 bits per pixel will be used to store the final image (with a palette). And if all the

177

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
List of Images

colors present contain 0 in the least significant bits (in 3 bits for the R and B channels, and in 2

bits for the G channel), then the 16 bits per point format will automatically be used.

4.23.2 List of Images - Syntax

const
 CLR_NONE = $FFFFFFFF;
 CLR_DEFAULT = $FF000000;

const
 ILC_MASK = $0001;
 ILC_COLOR = $00FE;
 ILC_COLORDDB = $00FE;
 ILC_COLOR4 = $0004;
 ILC_COLOR8 = $0008;
 ILC_COLOR16 = $0010;
 ILC_COLOR24 = $0018;
 ILC_COLOR32 = $0020;
 ILC_PALETTE = $0800;

const
 ILD_NORMAL = $0000;
 ILD_TRANSPARENT = $0001;
 ILD_MASK = $0010;
 ILD_IMAGE = $0020;
 ILD_BLEND25 = $0002;
 ILD_BLEND50 = $0004;
 ILD_OVERLAYMASK = $0F00;

const
 ILD_SELECTED = ILD_BLEND50;
 ILD_FOCUS = ILD_BLEND25;
 ILD_BLEND = ILD_BLEND50;
 CLR_HILIGHT = CLR_DEFAULT;

TImageList(unit KOL.pas) TObj _TObj

TImageList = object(TObj)

Object type to incapsulate icon or cursor image.

type TImageListColors = (ilcColor, ilcColor4, ilcColor8, ilcColor16, ilcColor24,
ilcColor32, ilcColorDDB, ilcDefault);

ImageList color schemes available.

type TDrawingStyles = (dsBlend25, dsBlend50, dsMask, dsTransparent);

ImageList drawing styles available.

type TDrawingStyle = Set of TDrawingStyles ;

Style of drawing is a combination of all available drawing styles.

92 92

92

177

178

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
List of Images

type TImgLOVrlayIdx = 1..15;

type TImageType =(itBitmap, itIcon, itCursor);

ImageList types available.

type PImageList = ̂ TImageList;

type HImageList = THandle;

type PImageInfo = ̂ TImageInfo;

type TImageInfo = packed record
 hbmImage: HBitmap;
 hbmMask: HBitmap;
 Unused1: Integer;
 Unused2: Integer;
 rcImage: TRect;
end;

function NewImageList(AOwner: PControl): PImageList ;

Constructor of TImageList object. Unlike other non-visual objects, image list can be parented by

TControl object (but this does not *must*), and in that case it is destroyed automatically when its

parent control is destroyed. Every control can have several TImageList objects, linked to a simple

list. But if any TImageList object is destroyed, all following ones are destroyed too (at least, now I

implemented it so).

TImageList Properties

property Handle : THandle;

Handle of ImageList object.

property ShareImages : Boolean;

True if images are shared between processes (it is set to True, if its Handle is assigned to given

value, which is a handle of already existing ImageList object).

property Colors : TImageListColors ;

Colors used to represent images.

property Masked : Boolean;

True, if mask is used. It is set to True, if first added image is icon, e.g.

property ImgWidth : Integer;

178

177

179

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
List of Images

Width of every image in list. If change, ImageList is cleared.

property ImgHeight : Integer;

Height of every image in list. If change, ImageList is cleared.

property Count : Integer;

Number of images in list.

property AllocBy : Integer;

Allocation factor. Default is 1. Set it to size of ImageList if this value is known - to optimize speed

of allocation.

property BkColor : TColor;

Background color.

property BlendColor : TColor;

Blend color.

property Bitmap : HBitmap;

Bitmap, containing all ImageList images (tiled horizontally).

property Mask : HBitmap;

Monochrome bitmap, containing masks for all images in list (if not Masked, always returns nil).

property DrawingStyle : TDrawingStyle ;

Drawing style.

property Overlay[Idx: TImgLOVrlayIdx]: Integer;

Overlay images for image list (images, used as overlay images to draw over other images from

the image list). These overalay images can be used in listview and treeview as overlaying

images (up to four masks at the same time).

property OverlayIdx: Integer;

Set this value to 1..15 to draw images overlayed (using Draw or DrawEx).

TImageList Methods

function ImgRect(Idx : Integer) : TRect;

177

178

180

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
List of Images

Rectangle occupied of given image in ImageList.

function Add(Bmp, Msk : HBitmap) : Integer;

Adds bitmap and given mask to ImageList.

function AddMasked(Bmp : HBitmap; Color : TColor) : Integer;

Adds bitmap to ImageList, using given color to create mask.

function AddIcon(Ico : HIcon) : Integer;

Adds icon to ImageList (always masked).

procedure Delete(Idx : Integer);

Deletes given image from ImageList.

procedure Clear;

Makes ImageList empty.

function Replace(Idx : Integer; Bmp, Msk : HBitmap) : Boolean;

Replaces given (by index) image with bitmap and its mask with mask bitmap.

function ReplaceIcon(Idx : Integer; Ico : HIcon) : Boolean;

Replaces given (by index) image with an icon.

function Merge(Idx : Integer; ImgList2 : PImageList ; Idx2 : Integer; X, Y :

Integer) : PImageList ;

Merges two ImageList objects, returns resulting ImageList.

function ExtractIcon(Idx : Integer) : HIcon;

Extracts icon by index.

function ExtractIconEx(Idx : Integer) : HIcon;

Extracts icon (is created using current drawing style).

procedure Draw(Idx : Integer; DC : HDC; X, Y : Integer);

Draws given (by index) image from ImageList onto passed Device Context.

procedure StretchDraw(Idx : Integer; DC : HDC; const Rect : TRect);

Draws given image with stratching.

function LoadBitmap(ResourceName : PKOLChar; TranspColor : TColor) : Boolean;

Loads ImageList from resource.

function LoadIcon(ResourceName : PAnsiChar) : Boolean;

178

178

181

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
List of Images

function LoadCursor(ResourceName : PAnsiChar) : Boolean;

function LoadFromFile(FileName : PKOLChar; TranspColor : TColor; ImgType :
TImageType) : Boolean;

Loads ImageList from file.

function LoadSystemIcons(SmallIcons : Boolean) : Boolean;

Assigns ImageList to system icons list (big or small).

function ImageList_Create(CX, CY: Integer; Flags: UINT; Initial, Grow: Integer):
HImageList; stdcall;

function ImageList_Destroy(ImageList: HImageList): Bool; stdcall;

function ImageList_GetImageCount(ImageList: HImageList): Integer; stdcall;

function ImageList_SetImageCount(ImageList: HImageList; Count: Integer): Integer;
stdcall;

function ImageList_Add(ImageList: HImageList; Image, Mask: HBitmap): Integer;
stdcall;

function ImageList_ReplaceIcon(ImageList: HImageList; Index: Integer; Icon: HIcon):
Integer; stdcall;

function ImageList_SetBkColor(ImageList: HImageList; ClrBk: TColorRef): TColorRef;
stdcall;

function ImageList_GetBkColor(ImageList: HImageList): TColorRef; stdcall;

function ImageList_SetOverlayImage(ImageList: HImageList; Image: Integer; Overlay:
Integer): Bool; stdcall;

function ImageList_AddIcon(ImageList: HImageList; Icon: HIcon): Integer;

function Index2OverlayMask(Index: Integer): Integer;

function ImageList_Draw(ImageList: HImageList; Index: Integer; Dest: HDC; X, Y:
Integer; Style: UINT): Bool; stdcall;

function ImageList_Replace(ImageList: HImageList; Index: Integer; Image, Mask:
HBitmap): Bool; stdcall;

function ImageList_AddMasked(ImageList: HImageList; Image: HBitmap; Mask:
TColorRef): Integer; stdcall;

function ImageList_DrawEx(ImageList: HImageList; Index: Integer; Dest: HDC; X, Y,
DX, DY: Integer; Bk, Fg: TColorRef; Style: Cardinal): Bool; stdcall;

182

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
List of Images

function ImageList_Remove(ImageList: HImageList; Index: Integer): Bool; stdcall;

function ImageList_GetIcon(ImageList: HImageList; Index: Integer; Flags: Cardinal):
HIcon; stdcall;

function ImageList_LoadImage(Instance: THandle; Bmp: PWideChar; CX, Grow: Integer;
Mask: TColorRef; pType, Flags: Cardinal): HImageList; stdcall;

function ImageList_LoadImage(Instance: THandle; Bmp: PAnsiChar; CX, Grow: Integer;
Mask: TColorRef; pType, Flags: Cardinal): HImageList; stdcall;

function ImageList_BeginDrag(ImageList: HImageList; Track: Integer; XHotSpot,
YHotSpot: Integer): Bool; stdcall;

function ImageList_EndDrag: Bool; stdcall;

function ImageList_DragEnter(LockWnd: HWnd; X, Y: Integer): Bool; stdcall;

function ImageList_DragLeave(LockWnd: HWnd): Bool; stdcall;

function ImageList_DragMove(X, Y: Integer): Bool; stdcall;

function ImageList_SetDragCursorImage(ImageList: HImageList; Drag: Integer;
XHotSpot, YHotSpot: Integer): Bool; stdcall;

function ImageList_DragShowNolock(Show: Bool): Bool; stdcall;

function ImageList_GetDragImage(Point, HotSpot: PPoint): HImageList; stdcall;

procedure ImageList_RemoveAll(ImageList: HImageList); stdcall;

function ImageList_ExtractIcon(Instance: THandle; ImageList: HImageList; Image:
Integer): HIcon; stdcall;

function ImageList_LoadBitmap(Instance: THandle; Bmp: PKOLChar; CX, Grow: Integer;
MasK: TColorRef): HImageList; stdcall;

function ImageList_GetIconSize(ImageList: HImageList; var CX, CY: Integer): Bool;
stdcall;

function ImageList_SetIconSize(ImageList: HImageList; CX, CY: Integer): Bool;
stdcall;

function ImageList_GetImageInfo(ImageList: HImageList; Index: Integer; var
ImageInfo: TImageInfo): Bool; stdcall;

function ImageList_Merge(ImageList1: HImageList; Index1: Integer; ImageList2:
HImageList; Index2: Integer; DX, DY: Integer): HImageList; stdcall;

183

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
List of Images

function LoadBmp(Instance: Integer; Rsrc: PKOLChar; MasterObj: PObj): HBitmap;

function LoadBmp32(Instance: Integer; Rsrc: PKOLChar; MasterObj: PObj): HBitmap;

4.24 Before getting started with Visual Objects

At this, perhaps, it is worth pause and stop for a while the story about all sorts of "simple"

objects produced from TObj . The fact is that very many of them, in the future, either interact

with visual objects, or are useful only in the presence of visual objects. For example, dialogs,

menus, even timers - they already need window objects to function properly. So now is the time

to start describing the most important part of KOL - the TControl object type.

The xHelpGen utility for KOL provides a lot about KOL (and you can learn more by looking at

the source code). But, unfortunately, much less information is available about MCK mirrors and

about visual programming of MCK projects, so I will dwell on this point in more detail in the next

article. The previous objects are objects of a significantly more temporary nature than what it

would make sense to call "components" and customize at the time of form design. Therefore,

they do not have MCK mirrors, except for graphical tools, the properties of which can be

adjusted together with the properties of the visual objects that own them. The exception is

TImageList , for which there is a mirrored TKOLImageList component.

As I mentioned at the beginning, the TControl object in KOL is not some basic type from which

all visual objects corresponding to different types of windows would inherit. In the KOL library,

all the main visual objects are encapsulated directly in TControl, similar to how it is implemented

for data streams (TStream) or for graphic canvas tools (TGraphicTool). Visual window

objects are created by various constructors, which all return a result of the PControl type, but the

appearance and behavior of the resulting objects differs (it is in the constructor that it is

determined what kind of functionality the created control element, or "control", performs - I will

call them that and sometimes hereinafter , to be short).

When designing the TControl type in this way, I had to resort to some tricks. Not only function

pointers are used, but also tables for handling the most common messages, and dynamic event

handlers, and all kinds of flags. All this in order to save the size of the involved code, and for

different "controls" to perform different required actions, if possible, with the same code.

In many cases it was possible to achieve "functional polymorphism", when the same method

or property, without changing the name, performs different (but similar in meaning) work for

different types of "controls". But sometimes it was not possible to do this, and for all such

methods and properties that do not apply to all types of "controls" at once, the source code

contains clarifications for which cases they can be applied. For some visual elements that have a

large set of additional properties and methods, the names of these properties and methods

contain a two-letter prefix that identifies the type of element to which they only refer (LV - list

view, TB - tool bar, TC - tab control, TV - tree view, RE - rich edit, etc.).

92

177

108 151

https://www.artwerp.be/kol/xhelpgen.zip

184

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

4.25 Common Properties and Methods - TControl

Common Properties and Methods of Window Objects - TControl

Since the TControl object type provides the ability to work with window (sometimes pseudo-

window) objects, properties and methods that determine the appearance, shape, size of the

window, location (in relation to the parent, or to screen). Also, since windows "enter" into the

relationship "parent" - "child window", all visual objects have a number of properties to

implement these relationships (i.e., parent objects store a list of child window objects in relation

to them, child objects have a link to parent window, and a number of properties for setting the

order of work with them in the input focus).

All windows in the Windows environment are not just rectangles in which something is drawn,

they are also code that works by processing messages sent to windows (from others or from the

same application, as well as by the system). It is this code that provides the required

functionality. Of course, some of the messages are processed automatically, depending on the

type of the created window, and on the various styles and parameters specified during its

creation. Moreover, some styles or modes of operation of windows are allowed to be changed

in the process of work (and some remain with them while they are alive). That is, event handling

is also an important common property of all window objects. And, finally, almost every window

can have a number of optional attributes (that is, they can be present for one kind of windows,

but for others they are simply ignored).

Let's immediately agree on some terms that will be used in describing the properties of window

objects. In this context, I call the "parent" of an object not the "ancestor" of the object in the

hierarchy of objects, but the "owner" of the object window. Those. the parent of the control

object is the visual object in which this "child" object is nested. In Windows, some windows are

nested inside others, while the nested windows become children of the parent, which is exactly

what is meant when we talk about parent and child windows.

Note: in VCL there is a separate concept of "owner" of an object (Owner). The owner is the

object that is responsible for destroying the given object when its own lifetime ends. KOL has an

automatic destruction mechanism (Add2AutoFree) to provide similar ownership of objects, and

when a visual object is first created, its parent window object is automatically owned.

Another important term (which I have already introduced above, getting a little ahead of myself)

is the Applet. in a sense, it is analogous to the TApplication object in the VCL. The difference

from VCL is that in KOL this object is encapsulated in the same TControl object type and is,

generally speaking, a window object (representing an application button on the taskbar). There

are also a number of differences. Perhaps it is worth noting here that the creation of this object

is optional for a simple KOL application consisting of a single form (and in this case, the main, it is

also the only, form of the application can successfully play the role of the applet, and then the

Applet variable also refers to the main application form). Conversely, you can use additional

instances of applets - on your forms, in order to

185

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

A form is defined in the same way as in the VCL - a top-level window object. These windows are

called popups in Windows API terms. Their window parent is the "desktop". This does not in the

least prevent us from assuming that the "parent" of a form in KOL is a special Applet object.

Those. the coordinates of the borders of the forms are set relative to the entire screen, of

course, but the Parent property will show on the Applet - this is done so that using the

ChildCount and Children properties of the applet, you can view all the forms of the application.

KOL also has the ability to create "graphical" visual objects (and, the choice of such visual

elements is much wider than in the VCL). In the following description, I will talk about visual

objects, meaning any visual elements on the form, including non-windowed graphic controls. If

the combination "window object" is used, then we are talking about the object to which the

window is associated, with its own handle of the window registered in the system.

4.25.1 Properties and Methods of window objects

Now let's look at those properties, methods and events that are most common for all window

objects encapsulated in the TControl object type. Since there are too many of these properties

common to all types of "controls", I will try to divide them into groups and somehow classify

them by purpose and scope:

· Window handle

· Parent and Child controls

· Availability and visibility

· Position and dimensions

· Painting

· Window text and font for the window

· Window color and window frame

· Messages (all window objects)

· Dispatching messages in KOL

· Keyboard and tabs between controls

· Mouse and mouse cursor

· Menu and Help

· Form and applet properties, methods, and events

o Appearance (form, applet)

o Messages (form, applet)

o OnFormClick event (for form)

· Modal dialogs

· Reference system

4.25.1.1 Window handle

Handle - window handle (hWnd type, i.e. 32-bit number that uniquely identifies the window in

the system). In KOL projects it is also possible to create pseudo-window objects, similar to

185

186

187

188

190

191

191

192

193

196

197

198

198

198

200

201

202

202

186

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

TGraphicControl in VCL, which do not have their own descriptor - for them Handle always

contains 0;

HandleAllocated - checks if a window has been created for the object;

GetWindowHandle - returns a handle (Handle) of the window, creating it if it has not yet been

created (this automatically creates windows for all parent window objects, if they have not been

created yet);

CreateWindow - does the same as GetWindowHandle, i.e. creates a window for the window

object if it has not been created yet;

CreateChildWindows - creates windows of all child TControl window objects (recursively) if

they have not been created yet;

Close - closes the window, and destroys the object (if the window is the main form of the

application or an Applet object, then the application ends);

ClsStyle - the style of the window class (the number used when creating the window as the

ClsStyle parameter in the call to CreateWindowEx), usually after creating the object there is no

need to change this property;

Style - window styles, changing this property allows you to fine-tune window properties,

intended for professionals;

ExStyle - extended window styles, similar to the previous one;

SubClassName - the name of the window class, by default it returns the string 'obj_XXXX', where
XXXX is the name of the window class (for example, for buttons: 'obj_BUTTON').

4.25.1.2 Parent and Child controls

Unlike the VCL, KOL does not have an Owner property for components. Ownership is

implemented here by the Add2AutoFree [Ex] method. If you use MCK to create a project, then

all objects of the form are attached to the object-holder of the form precisely by calling the

Add2AutoFree [Ex] methods in order to ensure that they are automatically destroyed along

with the form when its existence ends. For visual objects, there is a Parent property (and others

accompanying it), which uniquely defines the relationship between a parent window and a child

window in the Windows environment. Just like in the VCL, through the Parent property, you can

change the parent of a visual object dynamically, at runtime. But not always: for example, the

combo box does not allow such liberties, this is the behavior of the Windows API.

Parent - reference (PControl) to the parent window object (may be absent for top-level

windows (for Applet and for forms), as well as in the case when the window was created as a

child in relation to someone else's window (in the latter case, the parent is indicated by

ParentWindow);

ParentWindow - returns a handle to the parent window;

ParentForm - looks through all the parents up the chain, and returns the object of the form on

which the given window object lies;

ChildCount - returns the number of child window objects;

Children[i] - returns a pointer (PControl) for the i-th child element in the list (note: KOL still

retains the MembersCount and Members [i] properties, but this is a "tail" that has been going

on since the XCL days, in reality these properties are not needed, enough ChildCount and

Children [i]);

187

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

ChildIndex(C) - returns the index of the specified child window object (or -1 if such an object is

not found in the list of children);

MoveChild(C, i) - "moves" child "control" to the specified position in the list of child objects;

IsControl - checks that the object is exactly a "control" (that is, not a form or an applet).

4.25.1.3 Availability and visibility

Enabled - the "window is allowed" property, i.e. reacts to mouse and keyboard (usually it also

changes its visual style, if "not allowed", to show the user that it is useless to click on it at the

moment). An important point: although by setting the Enabled property to false, we thereby

"disable" automatically and all its child window objects, nevertheless, the appearance for child

objects will not change itself, you should use the EnableChildren method to ensure that all child

window objects are unavailable. objects);

EnableChildren(e, recursive) - allows or denies an object together with its child objects (if

recursive = true, then all child elements of all lower levels are recursively enumerated);

Visible - property "visible window". In fact, it sets the potential visibility of the window, i.e. acts

exactly the same as in the VCL for TwinControl. When Visible is true, the window is truly visible

only when all of its parent objects are visible. And if one of the parents is an object of the tab

control type, then it is also required that the tab on which this object is located, together with all

intermediate parent objects, is selected as the current one;

ToBeVisible - the property for reading "the window is really visible", in this property the

drawback of the Visible property is eliminated, and it is taken into account that all parent objects

are visible, and all tabs in the tab control are selected as the current one - the parents on which

this object lies;

CreateVisible - this property sets whether the object will be made visible immediately at the

time of creation; by default this property is set to false, which ensures the minimum number of

redrawings at the time of creating the form and its first display on the screen;

Show - a method for displaying a window and activating it, i.e. transferring keyboard focus to

the object window (this method is usually used, by analogy with VCL, to "show" a form, but it can

also be successfully used for any visual object, especially for an object that can accept keyboard

input, which is why I cite this method is here);

Hide - hides the window (equivalent to setting the Visible property to false);

OnShow - an event that fires every time the object window becomes visible. I emphasized,

because sometimes it is necessary to perform some actions when the form is first shown, for

example, but the programmer forgets to check that the form is actually displayed now for the

first time (and not the second, third, and all subsequent times). An important detail: when a

window becomes visible as a result of showing a parent window (for example, a form), this event

is not triggered;

OnHide - an event that fires when the window becomes invisible. Just like the OnShow event, it

fires only when the visibility (i.e. the Visible property) of the window itself changes, and does not

react to the change in the visibility of the window parents;

BringToFront - a method for transferring a visual (window) object to the foreground (i.e. if it is

partially or completely obscured by other objects, then it comes to the fore, and itself becomes

overlapping them in whole or in part);

188

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

SendToBack - the inverse method of BringToFront. The order of overlapping windows is

changed in such a way that the window of the given object goes to the back in comparison with

the neighboring windows.

4.25.1.4 Position and dimensions

Align - "alignment" of the window object on the parent window. The values are the same as in

the VCL for the Align property available in the VCL for some window object classes. The main

difference from VCL is that in KOL it is possible to align almost all types of "controls" (perhaps

with a few exceptions, namely: it is undesirable to try to align the combo box in height, as this

can lead to unpleasant consequences in Windows 9x). If an alignment is specified that is not

equal to caNone, then some of the characteristics of the bounding rectangle (below) cannot be

changed and is controlled by the alignment (for example, if the window is aligned to the left -

caLeft, then it is possible to change only the window width, but not the height and not the

coordinate of the upper left corner);

SetAlign(align) is a "pass-through" method that sets the Align property and returns a pointer to

the window object itself. "Through" methods are convenient to use when creating window

objects, for example:
NewButton (Panel1, 'Button1') .SetAlign (caLeft) .OnClick: = Click1;

BoundsRect - a rectangle that sets (and returns) the coordinates of the window object relative

to the parent window (or relative to the entire screen - for top-level windows, i.e. for the form

and applet); There are also properties for separately accessing / changing each of the window

coordinates in terms of "top-left corner position" / "width" / "height":

Left - left coordinate of the window;

Top - the top coordinate of the window;

Width - window width;

Height - window height;

ControlRect - the same as BoundsRect, but calculated by the stored coordinates, and not by

calling the API;

Position - coordinates of the upper left corner of the window as a point (TPoint);

ControlAtPos(X, Y, IgnoreDisabled) - determines which (child) visual object is located at the

given coordinates;

OnMove - an event triggered when the coordinates change (when the window moves on the

screen);

Dragging - checks if the object window is currently being "dragged" with the mouse (true after

calling DragStartEx);

DragStart - starts "dragging" the object window (control or form) with the mouse. Dragging

ends when the user releases the left mouse button (if at the time of the method call the left

mouse button is not pressed, then dragging does not start);

DragStartEx - similar to the previous one, but to stop dragging from the program it is required

(and possibly) to call the DragStopEx procedure;

PlaceRight - "through" method that places the current object to the right of the previous one in

the list (at a distance specified by the property parent);

189

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

PlaceDown - "through" method, placing the object below the previous one, the left coordinate

is set to the leftmost accessible position (Border + Margin of the parent), and the top coordinate

is provided below the bottom edge of all previous visual objects;

PlaceUnder - the "pass-through" method, which places the object directly under the previous

one (ignoring all the others previously placed);

Border - short integer (from –128 to +127) specifying the width of the parent window border.

This property is used both for alignment purposes and for the above PlaceXXXX placement

functions - to ensure the distance between the visual objects child with respect to this control.

That is, unlike VCL, when aligning child visual objects, the space specified by the parent's Border

property is provided between them. (See also the properties of MarginXXXX);

MarginTop - a short integer that specifies the additional distance (added with Border) from the

top edge of the client part of the parent window to the first child window, when it is

automatically placed (for example, when aligning child visual objects using the Align property).

This number can be negative;

MarginBottom - similar to MarginTop, but sets an additional distance from the bottom edge

of the parent visual object;

MarginLeft - similar to MargintTop, but for the left edge of the parent window;

MarginRight - similar to MarginTop, but for the right edge of the parent object;

SetSize(W, H) - "through" method, allows you to set a new window size (if W or H does not

exceed zero, the corresponding size does not change);

Size(W, H) - similar to the previous one, but automatically resizes the parent window

accordingly (and all parent windows - recursively);

AutoSize(on) - enables or disables automatic resizing of the window to its contents (unlike VCL,

such automatic resizing in KOL takes place not only for the "label" TLabel, as in VCL, but for a

slightly larger number of visual objects - buttons, check boxes and radio boxes, for example);

IsAutoSize - checks if automatic resizing is enabled for the object;

CanResize - sets whether the window can be resized (not only by the user with the mouse or

from the window's system menu, but any API call will not be able to resize the window for which

the CanResize property is set to false: you should be careful and set this value to false only after

how the window is already sized). The MCK mirror of the form (class TKOLForm) has a

corresponding design-time property CanResize, setting which to false will add false to the form's

CanResize property in the form initialization code - after the form's dimensions are determined;

MinHeight - minimum window height;

MinWidth - minimum window width;

MaxHeight - maximum window height;

MaxWidth - maximum window width;

OnResize - an event triggered when the object window resizes, for any reason;

AnchorRight - setting this property to true results in the position of the right edge of the visual

object being snapped to the size of the parent "control";

AnchorBottom - similar to the previous one, but snaps the bottom edge of the object to the

height of the parent;

AnchorTop - similar to the previous ones, but anchors the window to the top edge of the

parent;

AnchorLeft - the same, but snapping occurs to the left edge of the parent window;

Anchors(L, T, R, B) - "pass-through" method that allows you to set anchor AnchorLeft,

AnchorTop, AnchorRight or AnchorBottom in one call;

190

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

ClientRect - returns the coordinates of the client side of the window. Because the result is

returned in the coordinates of the client-side itself, then for all window objects, except for

"graphic" ones, the Left and Top fields of the returned rectangle are always equal to 0;

ClientWidth - the width of the client side of the window (including it can be changed through

this properties: the width of the entire window will be changed accordingly);

ClientHeight - similar to the previous property, the height of the client area of the window;

SetClientSize(W, H) - similar to SetSize, but resizes in terms of the client side of the window;

Client2Screen(P) - translates the coordinates of a point from the client coordinate system to

coordinates on the screen;

Screen2Client(P) - back to the Client2Screen method, for the specified coordinates on the

screen, returns the client coordinates of the point.

4.25.1.5 Painting

Invalidate - forces the window to be redrawn as soon as possible (that is, marks the client part

of the window as "invalid", as a result, the system, in the order of the queue, sends the window

all the necessary messages to redraw its contents);

InvalidateEx - forces the window and all its child windows to be redrawn recursively;

InvalidateNC(recursive) - Marks as "invalid" the entire window along with the non-client part,

and if the parameter recursive = true, then in this case the same is done recursively for all child

windows;

Update - immediately refreshes the window (if required, the system sends it all the necessary

messages);

BeginUpdate - increases the counter of "prohibitions" on updating the window, as a result the

window will not redraw its contents until this counter is reset after the corresponding number of

calls to the EndUpdate method;

EndUpdate - decreases the counter of "prohibitions" for redrawing. When this counter reaches

0, the window is redrawn if necessary;

DoubleBuffered- determines whether double buffering is used to draw the window (and all

windows that are children of this object). Double buffering increases the speed at which the

visual is redrawn. In KOL, almost any visual object (including a form) can use double buffering.

Exception: rich edit;

DblBufTopParent - returns the parent visual with the top-level double buffering property;

Transparent - transparency of the background of the client part of the visual object. In KOL, a lot

of visual elements (there are a few exceptions) can be "transparent". To implement

transparency, double buffering is also used, i.e. all parents of transparent "controls" are

automatically set to DoubleBuffered = true;

UpdateRgn - handle of the region to be redrawn. Set in the OnPaint event handler, can be used

to restrict the redrawing area in order to optimize performance;

EraseBackground - a boolean flag for passing it to the GetUpdateRegion function, when the

system asks for the window area to be redrawn when processing the WM_PAINT message (what

did you think?). If you set this property to true, then the system will ensure that the background

is erased in the entire marked area (which can lead to flickering with frequent redrawing, so this

property is set to false by default);

191

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

OnPaint - for almost any windowed and non-windowed visual object in KOL, it is possible to

override the drawing procedure by assigning a handler for this event (but in this case, your code

must provide all the drawing of the client side of the window). Usually such a handler is assigned

to a paint box object specially designed for this purpose, sometimes for panels (in fact, panels

do not differ from paint box controls except for the presence of text: in KOL, the "paint box" is

an ordinary window object, and can serve parent for other visual objects;

OnEraseBkgnd - this event will allow you to define your own procedure for erasing the

background. If such a handler is assigned, the system no longer erases the background on its

own by the default procedure. If at the same time the handler code does nothing, then the

erasure is not performed at all, and if you ensure the correct erasure of the background

simultaneously with painting in the OnPaint event handler, this allows you to completely

eliminate the flickering of the image during redrawing;

Canvas - the canvas of the visual object. Almost all windows allow you to override or redefine

the standard window drawing procedure, for example, see the events OnPaint, OnDrawItem, in

this case it is convenient to program the drawing procedure through the methods and

properties of the canvas object provided here.

4.25.1.6 Window text and font for the window

Caption - the same as Text - the main text of the visual object (for the form - the title, for the

applet - the title name, for the button - the text of the button, etc.). Stored in a buffer, at least

until the moment the window is created for the object (after which the contents of the buffer are

ignored, and the property is read and written by reading or setting the window text through API

functions). Although there are such types of windows for which this property is meaningless (list

view, for example - this property cannot affect its appearance in any way), I still list it in the list of

the most common properties, because visual objects that use it , lots of;

Text - the same as Caption - above;

Font - the font for displaying the text in the object window, if it is not changed, then the font

assigned to the parent is used, and if there were not only changes to the font, but even

references to it, then the system default font (FixedSys) is used. I draw your attention to the fact

that when setting the properties of visual elements in MCK, there is an additional design-time

property ParentFont, the value of which allows you to control whether the font setting will be

performed when the form is initialized (false), or the parent font will be used (true) ;

TextAlign - text alignment horizontally (left, right, center), makes sense for almost all controls

that have a displayed text (Caption) *;

VerticalAlign - vertical alignment of text in the window (text can be pressed to the top, to the

bottom, centered). Same as TextAlign, it works for almost all mono-text visuals (sometimes there

are restrictions on the combination of certain values of TextAlign and VerticalAlign).

4.25.1.7 Window color and window frame

Color - the main color of the visual object. The application depends on the purpose of the

object: for panels and labels, this property sets the background color, for edit boxes and other

editable "controls" - the background color for the text input field. When setting up a visual

element in MCK, there is also an additional design-time property: ParentColor, which controls

192

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

whether the color will be set in the form initialization code that generates the MCK, or the color

will not be set (and, accordingly, will be inherited parent's color);

Brush - a brush for filling the background, if set, then the Color property is not used for filling,

but the brush settings are used;

Ctl3D - the style of pseudo-three-dimensionality of the borders of the visual object (by default,

true, and this exactly corresponds to the standard external design of window objects in

Windows), this property is also inherited from the parent object by default;

HasBorder - just like Ctl3D, it controls the presence of a 3D frame around the window, but in a

slightly different way. In particular, it is allowed to change this property at runtime. For a form,

this property also makes sense, and allows, including dynamically, to remove or add a window

frame, by "hooking" the mouse cursor over the border of which the window can be resized. In

addition, a borderless form cannot have a non-client part at all, including a title. Such borderless

windows are often used as splash windows, or to create full-screen applications.

4.25.1.8 Messages (all window objects)

WndProc(Msg) - one of the few virtual methods in TControl, it can also be used to override the

main message handling procedure when inheriting a new window object from TControl;

OnMessage - a custom handler for any window messages arriving at the object window. In KOL,

it is possible to assign such a handler to any window object, including an applet, form, or control,

and handle any window messages sent by the system, with your code or other applications as

needed. (See also AttachProc and AttachProcEx).

Many programmers, starting to work in KOL, are puzzled by the fact that the usual Delphi way of

handling arbitrary messages by declaring (for example, in the declaration of a form object) a

dynamic handler using the message directive does not work. So, it shouldn't work (or even

compile). This directive is not supported by simple Pascal objects, but only by classes derived

from TObject.

However, nothing is easier than assigning an

event handler to the OnMessage event and

writing code to handle the requested message.

Moreover, this method allows you to expand

the functionality of any window object, and not

only the form (and for this there is no need to

produce a new heir). On the right is an

example of a hypothetical handler that

processes only a few window messages while

allowing others to be processed the same way.

procedure TForm1.Form1Message (
Sender: PObj; var Msg: TMsg;
 var Rslt: Integer): Boolean;
begin
 Result: = false;
 case Msg.message of
 WM_USER + 100: // your code
 ...
 end;
end;

The OnMessage event handler must return (Result) a boolean flag that allows further processing

of this message (thus, it has the ability to prevent the message from being passed to other

handlers if further processing is unnecessary or harmful). To the sender of the message (for

example, to the system, if this is a normal window message), the result is returned as an integer

through the Rslt parameter, please do not confuse them.

The message handling provided by the OnMessage event is not only as good as, but also more

convenient than the dynamic message mechanism in the VCL. For example, such a handler can

193

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

be easily added to any visual object on a form (MCK). And at the same time, there is no need to

inherit your visual object class, and then come up with a way to replace the object on the form

with your object (which is especially frustrating when it comes to the object used as a parent, or

more precisely, the owner of the child visual objects lying on it).

Perform(msgcode, wParam, lParam) - sends a message to the object window for immediate

execution;

Postmsg(msgcode, wParam, lParam) - puts a message in the queue of the object window,

execution itself does not start until it is selected in the order of the queue

AttachProc(proc)- attaches the specified procedure to the list of dynamic message handlers for

the window. In KOL, this is the main way to extend the functionality of existing window objects,

and one of the most important tools for saving code size, since it allows you to attach a message

handler required by a property only when there is a call to a certain property or when an event

handler is assigned. In addition, in this way, you can attach several handlers that are called

sequentially, from the last one attached to the first, until one of them returns the "do not process

anymore" flag (Result = FALSE).

AttachProcEx(proc, flag) - similar to the previous one, it also allows you to specify that this

handler continues to function after the moment when the application termination process has

already begun (in most cases, it is required, on the contrary, to stop processing all messages

from the moment when the application began to close, but there are also exceptions to of this

rule);

IsProcAttached(proc) - verifies that the specified procedure is attached to the list of dynamic

message handlers for the window;

DetachProc(proc) - removes the specified procedure from the list of dynamic handlers.

4.25.1.9 Dispatching messages in KOL

The main message loop is in the Run procedure, which starts immediately after the specified

forms and applet are created. You can easily replace this procedure with your own (for example,

to provide higher or lower priority for some types of messages). In the case of the MCK project,

for this it is enough to place your Run procedure directly in the main file of the DPR project,

before the INCLUDE directives, which include the generated application start code. In the case of

programming without MCK, you write the call to the Run procedure yourself: you can not call it,

but write your own message loop.

Dispatching is that for each message selected from the queue, TranslateMessage and

DispatchMessage are called. These are API functions that handle routing messages to specified

windows. After that, messages go to the global procedure WndFunc *. This is where the main

message dispatcher resides in KOL. Its main task is to find an object corresponding to the

window indicated in the message (hwnd field). Previously, the GetProp API function was used to

map a visual object to a window in KOL, but more recently it was decided that the so-called

"custom" window attribute field is usually not involved, and using it gives a slightly faster and

shorter code. As a result, in KOL, a window can be bound to an object either in one way or

another, depending on the value of the USE_PROP option.

When (and if) the WndFunc procedure has received the address of an object (it must be a

TControl object), it can already call its methods. This is where the WndProc method is called,

194

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

which carries out further processing of window messages. But if the address of the object could

not be obtained, that is, the message is intended for a window that does not have a TControl

object attached to it, then the WndProc method of the Applet object is called, and if it is not

assigned, then the message is passed to the system's default handler, the DefWindowProc

procedure.

A window may not be associated with a specific TControl object in several cases. This can be a

subordinate service window for some window object (for example, the drop-down list and the

input field for the combo box itself are organized in the system as children of the combobox

itself). It can be a window that you created without using TControl, your own code. Or the window

is still being created and the object has not yet been bound.

All TControl objects have the same WndProc procedure, and only the most common messages

are handled in it. The most important thing is that before starting to process the received

message, this method first tries to "disown" it, if possible. Namely, the algorithm is as follows.

First, if the Applet variable exists and an OnMessage event handler is assigned to it, then that

(your) handler is called first. If the OnMessage event handler returns FALSE, then the message is

considered fully processed, and it is no longer processed in any way, including by the default

message handling procedures.

Second, if an OnMessage event handler is assigned to the TControl object itself that received

the message, then this (your) handler is called. Again, if the event handler returns FALSE, then

the message is considered fully processed and all processing for that message ends.

195

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

Of course, returning TRUE to the WndProc procedure from the OnMessage

event handler (and other handlers) does not mean that the system will

necessarily agree with your instructions. If any requirements for processing the

message are not met, then there is a possibility that the system will send this

message again and again until it receives what it wants. For example, if in

response to the WM_PAINT message the system does not return the value 0 (the

Rslt parameter), the system will assume that the application for some reason

does not want to fulfill the order immediately and wants to postpone it for some

time. And he will send a message again, and again. There is a possibility that an

incorrectly written message handler can seriously slow down the operation of the

application; you must be careful when writing the code for the OnMessage

event.

196

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

Third, and this is the most important point, the executor of the message handlers dynamically

attached (by the AttachProc, AttachProcEx methods) to the object is called. These handlers are

intended primarily for internal use within the KOL library itself, to add the required message

handling functionality for specific kinds of window objects. But they can be used by

programmers as well, just like the fixed custom OnMessage handler. If such dynamic handlers

are attached (and this is true for almost all window objects), then the EnumDynHandlers function

begins to work. Its task is to view all dynamic handlers (from the last attached to the first), calling

them one by one, at least until the next handler in the chain "says"

In the picture attached above, I tried to depict the message dispatching process. And only if the

specified message handling is not found or has allowed the message to be processed further,

the TControl.WndProc method will handle the most common messages. Namely: WM_CLOSE,

WM_SIZE, WM_SYSCOMMAND, WM_SETFOCUS, WM_SETCURSOR, WM_CTLCOLORxxxx,

WM_COMMAND, WM_KEYxxxx. And for all other messages will call the default system handler.

4.25.1.10 Keyboard and tabs between controls

TabStop - determines whether the window object is contained in the general list of form objects

that can receive focus when pressing the Tab and Shift + Tab keys (but by default, processing of

these keys is not connected, this must be done additionally by your own code, see the Tabulate

and TabulateEx methods for the form and applet);

TabOrder - determines the order of the windowed object in the list of objects that can

sequentially receive keyboard input focus when pressing the Tab and Shift + Tab keys (see the

note on the previous TabStop property);

LookTabKeys - a list of keys that can be used for tabulating between controls that have

TabStop = true (usually the default list does not need to be changed, each type of window

object can have its own list of such keys);

GotoControl(Key) - performs tabulation as if the specified key was pressed;

Focused - checks if the window object has captured the keyboard input focus, and allows this

focus to be passed to the object window when this property is set to true;

DoSetFocus - this method tries to transfer the input focus to the window of this object (similar

to assigning true to the Focused property), and returns a sign of the success of this operation;

OnEnter - an event that is triggered when the object window receives keyboard input focus;

OnLeave - the event inverse to OnEnter: fires when the object window loses keyboard focus and

the focus moves to another application window (but this event does not fire when the entire

application loses focus; to respond to such an event, you need to catch it, for example, in the

OnMessage handler forms, message WM_ACTIVATE);

OnKeyDown - an event that is triggered for an object when a button is pressed on the

keyboard, when the object window has the keyboard input focus. It is possible to perform some

actions when pressing any keys, and reset the Key parameter, preventing further processing of

this key;

OnKeyUp - similar to the previous one, but triggered when the pressed button is released;

OnChar - triggered when a typed character arrives from the keyboard. Because there are

usually fewer buttons on the keyboard than can be entered printable characters, then pressing

and releasing buttons are translated into printable characters in such a way that sometimes a key

combination forms a character or several characters, depending on the installed equipment, on

197

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

regional settings, the currently selected input language and etc. Just as it was done for the

OnKeyDown event, in the OnChar event handler, it is also possible to set the Key parameter to

0 when some characters are received, preventing further processing of these characters;

IgnoreDefault - if this property for a control is set to true, then when it is in focus from the

keyboard, the <Enter> key does not cause the default button to be "pressed" (DefaultBtn);

4.25.1.11 Mouse and mouse cursor

Cursor - the mouse cursor in the window (can be overlapped for all visual objects by setting the

global variable ScreenCursor). Unlike VCL, this property in KOL, observing the principle of the

minimum number of object references, stores a number that is a handle to a cursor, of the

hCursor type. Note: to immediately change the cursor on the screen, it is not enough to change

this property; you must also call the SetCursor API function, passing the same cursor as a

parameter to it;

CursorLoad(inst, s) - loads the specified resource and sets it as the window cursor;

OnMouseDown - the event of pressing one of the mouse buttons (left, middle or right). Unlike

keyboard events, which are sent only to the window in focus, all mouse events are triggered for

all visual objects, starting with the most nested ones (which makes it possible to create a

common handler for the required mouse events for the parent window);

OnMouseUp - mouse button release event;

OnMouseMove - event of moving the mouse pointer;

OnMouseDblClk - mouse double click event. May only occur for windows that have a

corresponding CS_DBLCLKS flag in their class style;

OnMouseWheel - mouse wheel rotation event;

OnClick - the event of "pressing" on the control. I included it here, in the list of the most

common properties, since it is typical for almost all visual objects (except for the form itself -

only OnMouseXXXX events are valid for it!). Perhaps the placement of this event here is also

somewhat out of place because this event can be triggered not only by clicking the left mouse

button (for buttons, for example, this event also occurs as a result of pressing the <spacebar>

key on the keyboard). But its name quite eloquently describes the purpose of this event (to react

to a mouse click), so let it be here. Although on the form itself, this event just does not fire, just

because this event is processed not in response to a mouse click, but to the arrival of a

WM_COMMAND or WM_NOTIFY window message.

OnMouseEnter - an event that is triggered when the mouse enters the area visually occupied

by the object for the first time;

OnMouseLeave - an event that is triggered when the mouse cursor leaves the window;

MouseInControl - checks if the mouse cursor is within the visual boundaries of the object.

Works only if at least one of the handlers for the OnMouseEnter, OnMouseLeave events is

assigned (otherwise it always returns false);

LikeSpeedButton - this method changes the behavior of the window object in such a way that

when the mouse button is pressed on it, the OnClick event (if assigned) is triggered, but after

that, the input focus is returned to the window to which it belonged before the mouse click. this

is similar to how TSpeedButton works in VCL, but in KOL any window object can behave this way.

Although, of course, this property is designed primarily for buttons;

OnDropFiles - this event is triggered when the user has selected one or more files in an

application (most likely in Windows Explorer), then dragged them with the mouse onto the

198

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

window of our window object, and released the left mouse button (a common Windows

operation is "dragging" objects with the mouse , drag and drop). In the event handler, you can

get a list of files thrown in this way, and do something with them (the files themselves remain

where they were - at least until the moment this event occurs, and our application receives only

a list of lines containing paths to these files). This event can be assigned to the entire form, or to

a child window object, and it affects, among other things, all nested controls.

4.25.1.12 Menu and Help

SetAutoPopupMenu(PM) - Assigns an auto-popup context menu to an object (and all child

objects that do not have their own auto-popup menu). The automatic menu can be invoked by

right-clicking (unless a right-click handler has been assigned to prevent this action), as well as by

a specially designed key on the keyboard when the window is in focus (similarly, unless this key

is prevented from being processed). See also the description of the TMenu object in the

corresponding section;

HelpContext - the number used in the built-in help system to identify the visual element (to

connect the help, the programmer must also perform additional steps, see HelpSupport);

AssignHelpContext(i)- "pass-through" (returns a pointer to Self) method for setting the value

of the HelpContext property.

4.25.1.13 Form and applet properties, methods, and events

Since in KOL both the form and the controls are implemented in the same object type, all of the

above properties are also valid for the form (and some for the applet). Where it was obvious

that this property is applicable in general to all visual objects, I did not even stipulate this (for

example, it is obvious that the size and position of the window are properties of windows in

general, and therefore are applicable to forms, in particular). Where it's not entirely obvious, I've

mentioned that this property applies to a form or applet as well. But below we will talk about the

properties and methods that are characteristic of the latter. Those. this does not mean that

syntactically these properties are closed for use. The KOL library does not bother the compiler

with additional shields against inappropriate use of properties uncharacteristic for an object,

There will be fewer "form-only" properties, but it still makes sense to split them into some

groups:

4.25.1.13.1 Appearance (form, applet)

HasCaption - setting this property to false (including dynamic) allows you to remove the title

bar from the form window, including the window state control buttons located on it;

StayOnTop - a property for a form, allows you to place it on top of all windows for which the

same method is not applied (and at least for some time after the call, on top of all windows in

the system in general);

AlphaBlend - a number from 0 to 254 specifying the degree of translucency of the form (works

only in Windows 2000 and higher). A value of 0 corresponds to full transparency, when the

window is not visible at all, 255 means no transparency, i.e. other windows through this window

in this case do not "shine through" at all;

199

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

Menu - descriptor of the form menu (not 0 if the form window has a main menu at the top of

the window);

Icon - window icon (for form or Applet);

IconLoad(inst, s) - loads the specified resource of the RT_ICON type and sets it as a window

icon (Icon);

IconLoadCursor(inst, s) - loads a resource of type RT_CURSOR and sets it as a window icon

(Icon);

MinimizeNormalAnimated - this procedure includes a special additional handler for the

application minimization message for the application, in which the animation of the minimization

process becomes more similar to what is observed in other applications. If this procedure is not

called, then minimization occurs visually in a somewhat strange way (but the programmer may

wish that the windows in his application were minimized without animation at all). When setting

up a form in MCK, the form object has an additional MinimizeNormalAnimated property that

determines whether to generate a call to this procedure in the form initialization code;

OnMinimize - an event for the form and applet, allows you to perform some actions when

minimizing the window. For example, the handler can hide all windows of its application, and

instead show the application icon in the system area of the taskbar (called the tray, tray - "tray").

This action is called "minimizing to tray" in slang;

OnMaximize - an event for the form that is triggered when the window is maximized;

OnRestore - event of restoring a window from a minimized state (for a form or applet);

OnClose - an event that is triggered when trying to close the window. If the Accept parameter is

set to false in the event handler, then the window will not close (additionally, you can hide the

window - for the user this will not differ much in the visible result, but the form object will not be

destroyed, and next time it will be enough make it visible, this is the usual mechanism for

working with dialogs);

IsMainWindow - checks if the given object is the main form of the application. As with the

default VCL, the first form created automatically becomes the main form. Closing this form

(usually) terminates the application (but there may be exceptions), minimizing this form leads to

minimizing the entire application, etc .;

IsApplet - checks that the given object (forms) is exactly an applet (this method can be called,

generally speaking, for any TControl object);

IsForm - checks that the given visual object is a form, i.e. a top-level window located directly on

the desktop. This method is also suitable in the context of any window object, including a

"control", but for some voluntaristic reasons I put it here;

SimpleStatusText - simple text displayed in the status bar (assigning a value to this property

creates a status bar with a single panel). In the KOL form, if any non-empty text is added to the

status bar, the form is increased in height and the status bar appears. When you assign an empty

string to this property, the form is reduced in height and the status bar disappears. In order for

the form to have at least an empty status line initially, it is necessary to assign a string containing

spaces to this property during its initialization (one space is enough);

StatusText[i] - text in the i-th panel of the status line (i = 0..254);

StatusCtl - returns a pointer to a special object associated with the status bar (the object itself is

created automatically when the StatusText, SimpleStatusText properties change, and is

destroyed when the status bar disappears);

StatusWindow - handle to the status bar window;

RemoveStatus - removes the status bar (reducing the shape in height);

200

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

StatusPanelCount - the number of panels in the status bar;

StatusPanelRightX[i] - the right border of the i-th panel in the status bar;

SizeGrip - the presence of a dashed element in the lower right corner of the status bar, which

can be used to resize the shape with the mouse. This property should be set before creating the

form window.

I would like to draw your attention to the Visible property, which is common for

all visual objects. When it comes to a standalone applet object that does not

match the main application form, this property refers to the visibility of the

application button on the taskbar. Therefore, the question of how to remove this

button from the taskbar is solved in KOL by setting the Visible property to the

Applet variable. But, as I said, the applet must be a special object, and not the

same as the main form.

4.25.1.13.2 Messages (form, applet)

ProcessMessage - processes one message in the message queue;

ProcessMessages - processes all accumulated messages in the message queue for the window;

ProcessMessagesEx - the same as the previous method, but works better for cases where the

application is minimized or is not a background application. Usually the previous method is

sufficient. This method pre-sends the CM_PROCESS message to the window in order to "stir up"

the message queue;

ProcessPendingMessages - similar to ProcessMessages, but if there are no messages from

the mouse and keyboard in the queue, then an immediate return occurs and execution

continues;

ProcessPaintMessages - the same as ProcessMessages, but messages are executed only as

long as there is at least one message for drawing WM_PAINT windows in the queue, and if there

are no such messages in the queue, control returns immediately;

OnQueryEndSession - an event for an applet that allows you to "respond" to a system request

about the possibility of terminating the current session (and rebooting or turning off the power).

During execution, the handler for this event can ask the user to write unsaved data to disk, for

example, or to perform some other action. The handler can further parse the reasons for the

request in the CloseQueryReason property;

Please note: if such a handler is not installed, and you yourself do not process

such a message in any way, then when the Windows session ends, your

application will be unloaded without warning, and the OnDestroy events will not

even be triggered. The assignment of such a handler, even if it does nothing,

increases the size of the application by more than a hundred bytes, but ensures

the "correct" termination of the application, and if (your) additional code is

present, it allows you to perform other actions, including prevent session

termination. Note, however, that even if your application is working with

documents or databases, it is not very good to ask questions of the user

unnecessarily at the moment when he has already initiated shutdown. Just

imagine the situation when you have a couple of dozen applications running, and

when you try to log out, they all start asking a bunch of questions like "Are you

201

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

sure? ...". This is annoying to say the least (and in an emergency it can lead to

irreparable consequences!).

In addition, completion without calling OnDestroy and other final handlers is by

no means incorrect in all cases. There is a fairly wide class of applications (for

which the KOL library was originally positioned) that can be terminated at any

time. Since they do not perform modifications of data important for the user,

their immediate termination does not threaten any troubles either for the user,

or for the system, or for this application itself (if it is launched in the future). Even

if your application saves any files or modifies the database or registry, consider

immediately saving the application state without asking the user for permission:

when the session ends, he may really have no time to deal with your questions.

CloseQueryReason - contains one of the reasons for the request to end the session or to close

the window (closing the window by the user, turning off the power, terminating the session by

the user);

SupportMnemonics - this method provides processing by the form of pressing Alt + letter key

combinations for mnemonics assigned to menu items, buttons, checkboxes (check box, radio

box), and calling the OnClick handlers of the corresponding elements. If the method is called for

an applet, then mnemonics are processed for all forms, and for each form this method is no

longer required;

KeyPreview - for a form, provides preprocessing of keystrokes (for keys pressed on the

keyboard when one of the form windows owns the input focus). For this property to work, you

must also include the conditional compilation symbol KEY_PREVIEW in the project options;

ActiveControl - the active (i.e., keyboard focus) child visual object of the form.

4.25.1.13.3 OnFormClick event (for form)

The OnClick event does not fire for the form normally. This is because OnClick fires in response

to a selection command, which is not the same thing as a mouse click. Those. for most window

controls, a mouse click causes a command to be sent to that window item or its sub-item, but

generally speaking, a selection command can also be sent as a result of pressing certain keys,

such as the spacebar (on a button) or mnemonic code assigned to the item. A command is a

WM_COMMAND or WM_NOTIFY window message with the corresponding NM_CLICK

notification code (and the same goes for menu items), as a result of which the OnClick event is

triggered according to the rules of Windows OS. But the form, as you might guess, is not a

control, and clicking on it does not send such a message.

However, it is possible to handle the OnClick event for a form if you assign it by assigning the

address of the event handler to the OnFormClick property (as opposed to OnClick). For a form,

processing of the OnClick message is performed only as a result of pressing the mouse button

on it (on the area free of child visual elements).

In the case of using MCK, only the OnClick event for the form continues to be displayed in the

Object Property Inspector, but when the code is generated by the TKOLForm object, the value is

202

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

assigned to the OnFormClick event - in the case of a form. That is, technically in the case of

MCK, both of these events are equivalent for the form.

There is a peculiarity of using the OnClick event for a form, which appears when you double-

click on the form. Namely, OnClick is called twice - once for each click. And if you assign both

events (OnformClick and OnMouseDblClk), then the events will be called for each double click

in the following order: OnClick, OnMouseDblClk, OnClick.

4.25.1.14 Modal dialogs

ShowModal - a function for showing the form and displaying it in the modal dialog mode, for

the duration of this dialog all other forms of the application are prohibited, and only reacts to

the mouse click - to bring the application to the foreground. The modal dialog ends when the

ModalResult property of the modally displayed form is set to a nonzero value (or if the user has

closed the form, if possible), after which all forbidden forms are resolved again, and execution

continues from the point of call (in this case, ShowModal returns the value set in ModalResult).

A form called modally can nestedly call another modal dialog (and so on up to any nesting

level). A special chapter of this book will be devoted to working with modal forms in more

detail.

ShowModalParented(C) - shows the form in modal mode in relation to the specified form (i.e.,

only the specified form is prohibited, all other displayed forms continue to be allowed to switch

to them);

ShowModalEx - the same as ShowModal, but not only all other KOL-forms are prohibited, but

also all top-level windows for a given thread of execution of commands (thread). Useful for

creating modal KOL forms in a VCL application (for example, when a KOL form is launched from

a DLL, see the corresponding example);

ModalResult - an integer showing the result of the modal dialog execution (0 - the dialog is still

ongoing, less than zero - usually corresponds to the answer "no", in particular, the value -1 is set

when the user closes the modal form, all other values can be used by the developer at his

discretion);

Modal - checks that the form is shown as modal.

4.25.1.15 Reference system

HelpPath - the path string to the help file in the WinHelp format with the .hlp extension, to

use the help files in the HtmlHelp (* .chm) format, you must use the AssignHtmlHelp global

procedure;

OnHelp - an event for a form, triggered when the F1 key is pressed or help is requested by

clicking on a special icon, and then a visual element on the form is clicked with the mouse. The

event handler receives the context of the help call (and can change it dynamically);

CallHelp(i, C)- a form or Applet method, can be called to display help on a visual element with a

given context. By default, the help file in the WinHelp format is used; to use the help in the

HtmlHelp format, you must first call the AssignHtmlHelp procedure.

var HelpFilePath: PKOLChar;

203

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

Path to application help file. If not assigned, application path with extension replaced to '.hlp'

used. To use '.chm' file (HtmlHelp), call AssignHtmlHelp with a path to a html help file (or a

name).

procedure HtmlHelpCommand(Wnd: HWnd; const HelpFilePath: KOLString; Cmd, Data:
Integer);

Use this wrapper procedure to call HtmlHelp API function.

4.25.2 Common Properties and Methods - Syntax

TControl(unit KOL.pas) TObj _TObj
TControl = object(TObj)

TControl is the basic visual object of KOL. And now, all visual objects have the same type

PControl, differing only in "constructor", which during creating of object adjusts it so it can play

role of desired control. Idea of encapsulating of all visual objects having the most common set

of properties, is belonging to Vladimir Kladov, (C) 2000.

Since all visual objects are represented in KOL by this single object type, not all methods,

properties and events defined in TControl, are applicable to different visual objects. See also

notes about certain control kinds, located together with its constructing functions definitions.

type PControl = ̂ TControl ;

Type of pointer to TControl visual object. All constructing functions New[ControlName] are

returning pointer of this type. Do not forget about some difference of using objects from using

classes. Identifier Self for methods of object is not of pointer type, and to pass pointer to Self, it

is necessary to pass @Self instead. At the same time, to use pointer to object in 'WITH' operator,

it is necessary to apply suffix '^' to pointer to get know to compiler, what do You want.

type TWindowFunc = function(Sender: PControl ; var Msg: TMsg; var Rslt: Integer):
Boolean;

Event type to define custom extended message handlers (as pointers to procedure entry points).

Such handlers are usually defined like add-ons, extending behaviour of certain controls and

attached using AttachProc method of TControl . If the handler detects, that it is necessary to

stop further message processing, it should return True.

type TMouseButton =(mbNone, mbLeft, mbRight, mbMiddle);

Available mouse buttons. mbNone is useful to get know, that there were no mouse buttons

pressed.

type TMouseEventData = packed Record

Record to pass it to mouse handling routines, assigned to OnMouseXXXX events.

 Button: TMouseButton ;

 StopHandling: Boolean; Set it to True in OnMouseXXXX event handler to

 R1, R2: Byte; Not used

 Shift : DWORD; HiWord(Shift) = zDelta in WM_MOUSEWHEEL

203

203

203

203

203

204

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

 Button: TMouseButton ;

 X, Y : SmallInt;

end;

type TOnMouse = procedure(Sender: PControl ; var Mouse: TMouseEventData) of
object;

Common mouse handling event type.

type TOnKey = procedure(Sender: PControl ; var Key: Longint; Shift: DWORD) of
object;

Key events. Shift is a combination of flags MK_SHIFT, MK_CONTROL, MK_ALT. (See

GetShiftState funtion).

type TOnChar = procedure(Sender: PControl ; var Key: KOLChar; Shift: DWORD) of
object;

Char event. Shift is a combination of flags MK_SHIFT, MK_CONTROL, MK_ALT.

type TTabKey =(tkTab, tkLeftRight, tkUpDown, tkPageUpPageDn);

Available tabulating key groups.

type TTabKeys = Set of TTabKey ;

Set of tabulating key groups, allowed to be used in with a control (are installed by

TControl.LookTabKey property).

type TOnMessage = function(var Msg: TMsg; var Rslt: Integer): Boolean of object;

Event type for events, which allows to extend behaviour of windowed controls descendants

using add-ons.

type TOnEventAccept = procedure(Sender: PObj; var Accept: Boolean) of object;

Event type for OnClose event.

type TCloseQueryReason =(qClose, qShutdown, qLogoff);

Request reason type to call OnClose and OnQueryEndSession.

type TWindowState =(wsNormal, wsMinimized, wsMaximized);

Avalable states of TControl 's window object.

type TOnSplit = function(Sender: PControl ; NewSize1, NewSize2: Integer): Boolean
of object;

Event type for OnSplit event handler, designed specially for splitter control. Event handler must

return True to accept new size of previous (to splitter) control and new size of the rest of client

area of parent.

type TTreeViewOption =(tvoNoLines, tvoLinesRoot, tvoNoButtons, tvoEditLabels,
tvoHideSel, tvoDragDrop, tvoNoTooltips, tvoCheckBoxes, tvoTrackSelect,

203

203 203

203

211

203

204

203

203

205

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

tvoSingleExpand, tvoInfoTip, tvoFullRowSelect, tvoNoScroll, tvoNonEvenHeight);
Tree view options.

type TTreeViewOptions = set of TTreeViewOption ;
Set of tree view options.

type TOnTVBeginDrag = procedure(Sender: PControl ; Item: THandle) of object;

Event type for OnTVBeginDrag event (defined for tree view control).

type TOnTVBeginEdit = function(Sender: PControl ; Item: THandle): Boolean of
object;

Event type for OnTVBeginEdit event (for tree view control).

type TOnTVEndEdit = function(Sender: PControl ; Item: THandle; const NewTxt:
KOL_String): Boolean of object;

Event type for TOnTVEndEdit event.

type TOnTVExpanding = function(Sender: PControl ; Item: THandle; Expand:
Boolean): Boolean of object;

Event type for TOnTVExpanding event.

type TOnTVExpanded = procedure(Sender: PControl ; Item: THandle; Expand: Boolean)
of object;

Event type for OnTVExpanded event.

type TOnTVDelete = procedure(Sender: PControl ; Item: THandle) of object;

Event type for OnTVDelete event.

type TOnTVSelChanging = function(Sender: PControl ; oldItem, newItem: THandle):
Boolean of object;

When the handler returns False, selection is not changed.

type TOnDrag = function(Sender: PControl ; ScrX, ScrY: Integer; var CursorShape:
Integer; var Stop: Boolean): Boolean of object;

Event, called during dragging operation (it is initiated with method Drag, where callback function

of type TOnDrag is passed as a parameter). Callback function receives Stop parameter True,

when operation is finishing. Otherwise, it can set it to True to force finishing the operation (in

such case, returning False means cancelling drag operation, True - successful drag and in this last

case callback is no more called). During the operation, when input Stop value is False, callback

function can control Cursor shape, and return True, if the operation can be finished successfully

at the given ScrX, ScrY position. ScrX, ScrY are screen coordinates of the mouse cursor.

type TCreateParams = packed record

204

203

203

203

203

203

203

203

203

206

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

Record to pass it through CreateSubClass method.

 Caption: PKOLChar;

 Style: cardinal;

 ExStyle: cardinal;

 X, Y: Integer;

 Width, Height: Integer;

 WndParent: HWnd;

 Param: Pointer;

 WindowClass: TWndClass;

WinClassName: array[0.array.63] of
KOLChar;

end;

type TTextAlign =(taLeft, taRight, taCenter);

Text alignments available.

type TRichTextAlign =(raLeft, raRight, raCenter, raJustify, raInterLetter,
raScaled, raGlyphs, raSnapGrid);

Text alignment styles, available for RichEdit control.

type TVerticalAlign =(vaTop, vaCenter, vaBottom);

Vertical alignments available.

type TControlAlign =(caNone, caLeft, caTop, caRight, caBottom, caClient);

Control alignments available.

type TBitBtnOption =(bboImageList, bboNoBorder, bboNoCaption, bboFixed,
bboFocusRect);

Options available for NewBitBtn.

type TBitBtnOptions = set of TBitBtnOption ;

Set of options, available for NewBitBtn.

type TGlyphLayout =(glyphLeft, glyphTop, glyphRight, glyphBottom, glyphOver);

Layout of glyph (for NewBitBtn). Layout glyphOver means that text is drawn over glyph.

type TOnBitBtnDraw = function(Sender: PControl ; BtnState: Integer): Boolean of
object;

Event type for TControl.OnBitBtnDraw event (which is called just before drawing the BitBtn). If

handler returns True, there are no drawing occure. BtnState, passed to a handler, determines

current button state and can be following: 0 - not pressed, 1 - pressed, 2 - disabled, 3 - focused.

Value 4 is reserved for highlight state (then mouse is over it), but highlighting is provided only if

property Flat is set to True (or one of events OnMouseEnter / OnMouseLeave is assigned to

206

203

207

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

something).

type TListViewStyle =(lvsIcon, lvsSmallIcon, lvsList, lvsDetail,
lvsDetailNoHeader);

Styles of view for ListView control (see NewListVew).

type TListViewItemStates = (lvisFocus, lvisSelect, lvisBlend, lvisHighlight);

type TListViewItemState = Set of TListViewItemStates ;

type TOnEditLVItem = function(Sender: PControl ; Idx, Col: Integer; NewText:
PKOL_Char): Boolean of object;

Event type for OnEndEditLVItem. Return True in handler to accept new text value.

type TOnDeleteLVItem = procedure(Sender: PControl ; Idx: Integer) of object;

Event type for OnDeleteLVItem event.

type TOnLVData = procedure(Sender: PControl ; Idx, SubItem: Integer; var Txt:
KOL_String; var ImgIdx: Integer; var State: DWORD; var Store: Boolean) of object;

Event type for OnLVData event. Used to provide virtual list view control (i.e. having

lvoOwnerData style) with actual data on request. Use parameter Store as a flag if control should

store obtained data by itself or not.

type TOnCompareLVItems = function(Sender: PControl ; Idx1, Idx2: Integer):
Integer of object;

Event type to compare two items of the list view (while sorting it).

type TOnLVColumnClick = procedure(Sender: PControl ; Idx: Integer) of object;

Event type for OnColumnClick event.

type TOnLVStateChange = procedure(Sender: PControl ; IdxFrom, IdxTo: Integer;
OldState, NewState: DWORD) of object;

Event type for OnLVStateChange event, called in responce to select/unselect a single item or

items range in list view control).

type TOnLVCustomDraw = function(Sender: PControl ; DC: HDC; Stage: DWORD; ItemIdx,

SubItemIdx: Integer; const Rect: TRect; ItemState: TDrawState ; var TextColor,
BackColor: TColor): DWORD of object;

Event type for OnLVCustomDraw event.

207

203

203

203

203

203

203

203

210

208

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

type TWherePosLVItem = (lvwpOnIcon, lvwpOnLabel, lvwpOnStateIcon, lvwpOnColumn,
lvwpOnItem);

type TEdgeStyle =(esRaised, esLowered, esNone, esTransparent, esSolid);

Edge styles (for panel - see NewPanel). esTransparent and esSolid - special styles equivalent

to esNone except GRushControls are used via USE_GRUSH symbol (ToGRush.pas)

type TGradientStyle =(gsVertical, gsHorizontal, gsRectangle, gsElliptic, gsRombic,
gsTopToBottom, gsBottomToTop);

Gradient fill styles. See also TGradientLayout .

type TGradientLayout =(glTopLeft, glTop, glTopRight, glLeft, glCenter, glRight,
glBottomLeft, glBottom, glBottomRight);

Position of starting line / point for gradient filling. Depending on TGradientStyle , means

either position of first line of first rectangle (ellipse) to be expanded in a loop to fit entire

gradient panel area.

type TProgressbarOption =(pboVertical, pboSmooth);

Options for progress bar.

type TProgressbarOptions = set of TProgressbarOption ;

Set of options available for progress bar.

type TEditOption =(eoNoHScroll, eoNoVScroll, eoLowercase, eoMultiline, eoNoHideSel,
eoOemConvert, eoPassword, eoReadonly, eoUpperCase, eoWantReturn, eoWantTab, eoNumber
);

Available edit options.

Please note, that eoWantTab option just removes TAB key from a list of keys available to

tabulate from the edit control. To provide insertion of tabulating key, do so in

TControl.OnChar event handler. Sorry for inconvenience, but this is because such behavior is

not must in all cases. See also TControl.EditTabChar property.

type TEditOptions = Set of TEditOption ;

Set of available edit options.

type TRichFmtArea =(raSelection, raWord, raAll);

Characters formatting area for RichEdit.

type TRETextFormat =(reRTF, reText, rePlainRTF, reRTFNoObjs, rePlainRTFNoObjs,
reTextized, reUnicode, reTextUnicode);

Available formats for transfer RichEdit text using property TControl.RE_Text .

reRTF - normal rich text (no transformations)

347

208

208

208

273

251

208

244

209

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

reText - plain text only (without OLE objects)
reTextized - plain text with text representation of COM objects
rePlainRTF - reRTF without language-specific keywords
reRTFNoObjs - reRTF without OLE objects
rePlainRTFNoObjs - rePlainRTF without OLE objects
reUnicode - stream is 2-byte Unicode characters rather then 1-byte

Ansi

type TRichUnderline =(ruSingle, ruWord, ruDouble, ruDotted, ruDash, ruDashDot,
ruDashDotDot, ruWave, ruThick, ruHairLine);

Rich text exteded underline styles (available only for RichEdit v2.0, and even for RichEdit v2.0

additional styles can not displayed - but ruDotted under Windows2000 is working).

type TRichTextSizes =(rtsNoUseCRLF, rtsNoPrecise, rtsClose, rtsBytes);

Options to calculate size of rich text. Available only for RichEdit2.0 or higher.

type TRichTextSize = set of TRichTextSizes ;

Set of all available optioins to calculate rich text size using property TControl.RE_TextSize

[options].

type TRichNumbering =(rnNone, rnBullets, rnArabic, rnLLetter, rnULetter, rnLRoman,
rnURoman);

Advanced numbering styles for paragraph (RichEdit).

rnNone - no numbering
rnBullets - bullets only
rnArabic - 1, 2, 3, 4, ...
rnLLetter - a, b, c, d, ...
rnULetter - A, B, C, D, ...
rnLRoman - i, ii, iii, iv, ...
rnURoman - I, II, III, IV, ...
rnNoNumber - do not show any numbers (but numbering is taking place).

type TRichNumBrackets =(rnbRight, rnbBoth, rnbPeriod, rnbPlain, rnbNoNumber);

Brackets around number:

rnbRight - 1) 2) 3) - this is default !
rnbBoth - (1) (2) (3)
rnbPeriod - 1. 2. 3.
rnbPlain - 1 2 3

type TBorderEdge =(beLeft, beTop, beRight, beBottom);

Borders of rectangle.

type TOnTestMouseOver = function(Sender: PControl): Boolean of object;

Event type for TControl.OnTestMouseOver event. The handler should return True, if it detects if

the mouse is over control.

209

238

210

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

type TDrawStates =(odsSelected, odsGrayed, odsDisabled, odsChecked,
odsFocused, odsDefault, odsHotlist, odsInactive, odsNoAccel, odsNoFocusRect,
ods400reserved, ods800reserved, odsComboboxEdit, odsMarked,
odsIndeterminate);
Possible draw states.

odsSelected - The menu item's status is selected.
odsGrayed - The item is to be grayed. This bit is used only in a

menu.
odsDisabled - The item is to be drawn as disabled.
odsChecked - The menu item is to be checked. This bit is used

only in a menu.
odsFocused - The item has the keyboard focus.
odsDefault - The item is the default item.
odsHotList - Windows 98, Windows 2000: The item is being hot-

tracked, that is, the item will be highlighted when
the mouse is on the item.

odsInactive - Windows 98, Windows 2000: The item is inactive and
the window associated with the menu is inactive.

odsNoAccel - Windows 2000: The control is drawn without the
keyboard accelerator cues.

odsNoFocusRect - Windows 2000: The control is drawn without focus
indicator cues.

odsComboboxEdit - The drawing takes place in the selection field (edit
control) of an owner-drawn combo box.

odsMarked - for Common controls only. The item is marked. The
meaning of this is up to the implementation.

odsIndeterminate - for Common Controls only. The item is in an
indeterminate state.

type TDrawState = Set of TDrawStates ;

Set of possible draw states.

type TOnDrawItem = function(Sender: PObj ; DC: HDC; const Rect: TRect; ItemIdx:

Integer; DrawAction: TDrawAction; ItemState: TDrawState): Boolean of object;

Event type for OnDrawItem event (applied to list box, combo box, list view).

type TOnMeasureItem = function(Sender: PObj ; Idx: Integer): Integer of object;

Event type for OnMeasureItem event. The event handler must return height of list box item as a

result.

type TListOption =(loNoHideScroll, loNoExtendSel, loMultiColumn,
loMultiSelect, loNoIntegralHeight, loNoSel, loSort, loTabstops, loNoStrings,
loNoData, loOwnerDrawFixed, loOwnerDrawVariable, loHScroll);

Options for ListBox (see NewListbox). To use loHScroll, you also have to send

LB_SETHORIZONTALEXTENT with a maximum width of a line in pixels (wParam)!

type TListOptions = Set of TListOption ;

Set of available options for Listbox.

type TComboOption =(coReadOnly, coNoHScroll, coAlwaysVScroll, coLowerCase,

210

92

210

92

358

210

211

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

coNoIntegralHeight, coOemConvert, coSort, coUpperCase, coOwnerDrawFixed,
coOwnerDrawVariable, coSimple);

Options for combobox.

type TComboOptions = Set of TComboOption ;

Set of options available for combobox.

type TToolbarOption =(tboTextRight, tboTextBottom, tboFlat, tboTransparent,
tboWrapable, tboNoDivider, tbo3DBorder, tboCustomErase);

Toolbar options. When tboFlat is set and toolbar is placed onto panel, set its property

Transparent to TRUE to provide its correct view.

type TToolbarOptions = Set of TToolbarOption ;

Set of toolbar options.

type TOnToolbarButtonClick = procedure(Sender: PControl ; BtnID: Integer) of
object;

Special event type to handle separate toolbar buttons click events.

type TOnTBCustomDraw = function(Sender: PControl ; var NMCD: TNMTBCustomDraw):
Integer of object;

Event type for OnTBCustomDraw event.

type TTabControlOption =(tcoButtons, tcoFixedWidth, tcoFocusTabs, tcoIconLeft,
tcoLabelLeft, tcoMultiline, tcoMultiselect, tcoFitRows, tcoScrollOpposite,
tcoBottom, tcoVertical, tcoFlat, tcoHotTrack, tcoBorder, tcoOwnerDrawFixed);

Options, available for TabControl.

type TTabControlOptions = set of TTabControlOption ;

Set of options, available for TAbControl during its creation (by NewTabControl function).

type TDateTimePickerOption =(dtpoTime, dtpoDateLong, dtpoUpDown, dtpoRightAlign,
dtpoShowNone, dtpoParseInput);

type TDateTimePickerOptions = set of TDateTimePickerOption ;

function GetShiftState: DWORD;

Returns shift state.

210

211

203

203

211

366

211

212

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

TControl properties

property Parent: PControl;

Parent of TParent object. Also must be of TParent type or derived from TParent.

property Enabled: Boolean;

Enabled usually used to decide if control can get keyboard focus or been clicked by mouse.

property Visible: Boolean;

Obvious.

property ToBeVisible: Boolean;

Returns True, if a control is supposed to be visible when its form is showing.

property CreateVisible: Boolean;

False by default. If You want your form to be created visible and flick due creation, set it to True.

This does not affect size of executable anyway.

property BoundsRect: TRect;

Bounding rectangle of the visual. Coordinates are relative to top left corner of parent's

ClientRect , or to top left corner of screen (for TForm).

property Left: Integer;

Left horizontal position.

property Top: Integer;

Top vertical position.

property Width: Integer;

Width of TVisual object.

property Height: Integer;

Height of TVisual object.

property Position: TPoint;

Represents top left position of the object. See also BoundsRect .

property MinWidth: SmallInt;

Minimal width constraint.

248

212

213

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

property MinHeight: SmallInt;

Minimal height constraint.

property MaxWidth: SmallInt;

Maximal width constraint.

property MaxHeight: SmallInt;

Maximal height constraint.

property ClientWidth: Integer;

Obvious. Accessing this property, program forces window latent creation.

property ClientHeight: Integer;

Obvious. Accessing this property, program forces window latent creation.

property Windowed: Boolean;

Constantly returns True, if object is windowed (i.e. owns correspondent window handle).

Otherwise, returns False.

By now, all the controls are windowed (there are no controls in KOL, which are emulating

window, acually belonging to Parent - like TGraphicControl in VCL).

Writing of this property provided only for internal purposes, do not change it directly unless you

understand well what you do.

property ChildCount: Integer;

Returns number of commonly accessed child objects.

property Children[Idx: Integer]: PControl;

Child items of TVisual object. Property is reintroduced here to separate access to always visible

Children[] from restricted a bit Members[].

property WindowedParent: PControl;

Returns nearest windowed parent, the same as Parent .

property ActiveControl: PControl;

property Handle: HWnd;

Returns descriptor of system window object. If window is not yet created, 0 is returned. To

allocate handle, call CreateWindow method.

property ParentWindow: HWnd;

Returns handle of parent window (not TControl object, but system window object handle).

212

212

250

214

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

property ClsStyle: DWord;

Window class style. Available styles are:

CS_BYTEALIGNCLIENT Aligns the window's client area on the byte boundary (in the

x direction) to enhance performance during drawing

operations.

CS_BYTEALIGNWINDOW Aligns a window on a byte boundary (in the x direction).

CS_CLASSDC Allocates one device context to be shared by all windows in

the class.

CS_DBLCLKS Sends double-click messages to the window procedure

when the user double-clicks the mouse while the cursor is

within a window belonging to the class.

CS_GLOBALCLASS Allows an application to create a window of the class

regardless of the value of the hInstance parameter.

You can create a global class by creating the window class in

a dynamic-link library (DLL) and listing the name of the DLL in

the registry under specific keys.

CS_HREDRAW Redraws the entire window if a movement or size adjustment

changes the width of the client area.

CS_NOCLOSE Disables the Close command on the System menu.

CS_OWNDC Allocates a unique device context for each window in the

class.

CS_PARENTDC Sets the clipping region of the child window to that of the

parent window so that the child can draw on the parent.

CS_SAVEBITS Saves, as a bitmap, the portion of the screen image obscured

by a window. Windows uses the saved bitmap to re-create

the screen image when the window is removed.

CS_VREDRAW Redraws the entire window if a movement or size adjustment

changes the height of the client area.

For more info, see Win32.hlp (keyword 'WndClass');

property Style: DWord;

Window styles. Available styles are:

WS_BORDER Creates a window that has a thin-line border.

WS_CAPTION Creates a window that has a title bar (includes the

WS_BORDER style).

WS_CHILD Creates a child window. This style cannot be used with the

WS_POPUP style.

WS_CHILDWINDOW Same as the WS_CHILD style.

250

215

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

WS_BORDER Creates a window that has a thin-line border.

WS_CLIPCHILDREN Excludes the area occupied by child windows when drawing

occurs within the parent window. This style is used when

creating the parent window.

WS_CLIPSIBLINGS Clips child windows relative to each other; that is, when a

particular child window receives a WM_PAINT message, the

WS_CLIPSIBLINGS style clips all other overlapping child

windows out of the region of the child window to be

updated. If WS_CLIPSIBLINGS is not specified and child

windows overlap, it is possible, when drawing within the

client area of a child window, to draw within the client area of

a neighboring child window.

WS_DISABLED Creates a window that is initially disabled. A disabled window

cannot receive input from the user.

WS_DLGFRAME Creates a window that has a border of a style typically used

with dialog boxes. A window with this style cannot have a

title bar.

WS_GROUP Specifies the first control of a group of controls. The group

consists of this first control and all controls defined after it,

up to the next control with the WS_GROUP style. The first

control in each group usually has the WS_TABSTOP style so

that the user can move from group to group. The user can

subsequently change the keyboard focus from one control in

the group to the next control in the group by using the

direction keys.

WS_HSCROLL Creates a window that has a horizontal scroll bar.

WS_ICONIC Creates a window that is initially minimized. Same as the

WS_MINIMIZE style.

WS_MAXIMIZE Creates a window that is initially maximized.

WS_MAXIMIZEBOX Creates a window that has a Maximize button. Cannot be

combined with the WS_EX_CONTEXTHELP style. The

WS_SYSMENU style must also be specified.

WS_MINIMIZE Creates a window that is initially minimized. Same as the

WS_ICONIC style.

WS_MINIMIZEBOX Creates a window that has a Minimize button. Cannot be

combined with the WS_EX_CONTEXTHELP style. The

WS_SYSMENU style must also be specified.

WS_OVERLAPPED Creates an overlapped window. An overlapped window has a

title bar and a border. Same as the WS_TILED style.

WS_OVERLAPPEDWINDOW Creates an overlapped window with the WS_OVERLAPPED,

WS_CAPTION, WS_SYSMENU, WS_THICKFRAME,

216

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

WS_BORDER Creates a window that has a thin-line border.

WS_MINIMIZEBOX, and WS_MAXIMIZEBOX styles. Same as

the WS_TILEDWINDOW style.

WS_POPUP Creates a pop-up window. This style cannot be used with the

WS_CHILD style.

WS_POPUPWINDOW Creates a pop-up window with WS_BORDER, WS_POPUP,

and WS_SYSMENU styles. The WS_CAPTION and

WS_POPUPWINDOW styles must be combined to make the

window menu visible.

WS_SIZEBOX Creates a window that has a sizing border. Same as the

WS_THICKFRAME style.

WS_SYSMENU Creates a window that has a window-menu on its title bar.

The WS_CAPTION style must also be specified.

WS_TABSTOP Specifies a control that can receive the keyboard focus when

the user presses the TAB key. Pressing the TAB key changes

the keyboard focus to the next control with the

WS_TABSTOP style.

WS_THICKFRAME Creates a window that has a sizing border. Same as the

WS_SIZEBOX style.

WS_TILED Creates an overlapped window. An overlapped window has a

title bar and a border. Same as the WS_OVERLAPPED style.

WS_TILEDWINDOW Creates an overlapped window with the WS_OVERLAPPED,

WS_CAPTION, WS_SYSMENU, WS_THICKFRAME,

WS_MINIMIZEBOX, and WS_MAXIMIZEBOX styles. Same as

the WS_OVERLAPPEDWINDOW style.

WS_VISIBLE Creates a window that is initially visible.

WS_VSCROLL Creates a window that has a vertical scroll bar.

See also Win32.hlp (topic CreateWindow).

property ExStyle: DWord;

Extra window styles. Available flags are following:

WS_EX_ACCEPTFILES Specifies that a window created with this style accepts drag-

drop files.

WS_EX_APPWINDOW Forces a top-level window onto the taskbar when the

window is minimized.

WS_EX_CLIENTEDGE Specifies that a window has a border with a sunken edge.

WS_EX_CONTEXTHELP
Includes a question mark in the title bar of the window.

When the user clicks the question mark, the cursor changes

250

217

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

WS_EX_ACCEPTFILES Specifies that a window created with this style accepts drag-

drop files.

to a question mark with a pointer. If the user then clicks a

child window, the child receives a WM_HELP message. The

child window should pass the message to the parent window

procedure, which should call the WinHelp function using the

HELP_WM_HELP command. The Help application displays a

pop-up window that typically contains help for the child

window.WS_EX_CONTEXTHELP cannot be used with the

WS_MAXIMIZEBOX or WS_MINIMIZEBOX styles.

WS_EX_CONTROLPARENT Allows the user to navigate among the child windows of the

window by using the TAB key.

WS_EX_DLGMODALFRAME Creates a window that has a double border; the window can,

optionally, be created with a title bar by specifying the

WS_CAPTION style in the dwStyle parameter.

WS_EX_LEFT Window has generic "left-aligned" properties. This is the

default.

WS_EX_LEFTSCROLLBAR If the shell language is Hebrew, Arabic, or another language

that supports reading order alignment, the vertical scroll bar

(if present) is to the left of the client area. For other

languages, the style is ignored and not treated as an error.

WS_EX_LTRREADING The window text is displayed using Left to Right reading-

order properties. This is the default.

WS_EX_MDICHILD Creates an MDI child window.

WS_EX_NOPARENTNOTIFY Specifies that a child window created with this style does not

send the WM_PARENTNOTIFY message to its parent window

when it is created or destroyed.

WS_EX_OVERLAPPEDWINDOW Combines the WS_EX_CLIENTEDGE and

WS_EX_WINDOWEDGE styles.

WS_EX_PALETTEWINDOW Combines the WS_EX_WINDOWEDGE,

WS_EX_TOOLWINDOW, and WS_EX_TOPMOST styles.

WS_EX_RIGHT Window has generic "right-aligned" properties. This depends

on the window class. This style has an effect only if the shell

language is Hebrew, Arabic, or another language that

supports reading order alignment; otherwise, the style is

ignored and not treated as an error.

WS_EX_RIGHTSCROLLBAR Vertical scroll bar (if present) is to the right of the client area.

This is the default.

WS_EX_RTLREADING If the shell language is Hebrew, Arabic, or another language

that supports reading order alignment, the window text is

displayed using Right to Left reading-order properties.

212

212

218

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

WS_EX_ACCEPTFILES Specifies that a window created with this style accepts drag-

drop files.

For other languages, the style is ignored and not treated as

an error.

WS_EX_STATICEDGE Creates a window with a three-dimensional border style

intended to be used for items that do not accept user input.

WS_EX_TOOLWINDOW Creates a tool window; that is, a window intended to be used

as a floating toolbar. A tool window has a title bar that is

shorter than a normal title bar, and the window title is drawn

using a smaller font. A tool window does not appear in the

taskbar or in the dialog that appears when the user presses

ALT+TAB.

WS_EX_TOPMOST Specifies that a window created with this style should be

placed above all non-topmost windows and should stay

above them, even when the window is deactivated. To add

or remove this style, use the SetWindowPos function.

WS_EX_TRANSPARENT Specifies that a window created with this style is to be

transparent. That is, any windows that are beneath the

window are not obscured by the window. A window created

with this style receives WM_PAINT messages only after all

sibling windows beneath it have been updated.

WS_EX_WINDOWEDGE Specifies that a window has a border with a raised edge.

See also Win32.hlp (topic CreateWindowEx).

property Cursor: HCursor;

Current cursor. For most of controls, sets initially to IDC_ARROW. See also ScreenCursor.

property Icon: HIcon;

Icon. By default, icon of the Applet is used. To load icon from the resource, use IconLoad or

IconLoadCursor method - this is more correct, because in such case a special flag is set to

prevent attempts to destroy shared icon object in the destructor of the control.

property Menu: HMenu;

Menu (or ID of control - for standard GUI controls).

property HelpContext: Integer;

Help context.

property HelpPath: KOLString;

Property of a form or an Applet. Change it to provide custom path to WinHelp format help file.

If HtmlHelp used, call global procedure AssignHtmlHelp instead.

250

250

219

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

property Caption: KOLString;

Caption of a window. For standard Windows buttons, labels and so on not a caption of a

window, but text of the window.

property Text: KOLString;

The same as Caption . To make more convenient with Edit controls. For Rich Edit control, use

property RE_Text .

property SelStart: Integer;

Start of selection (editbox - character position).

property SelLength: Integer;

Length of selection (editbox - number of characters selected, multiselect listbox or listview -

number of items selected).

Note, that for combobox and single-select listbox it always returns 0 (though for single-select

listview, returns 1, if there is an item selected).

It is possible to set SelLength only for memo and richedit controls.

property Selection: KOLString;

Selected text (editbox, richedit) as string. Can be useful to replace selection. For rich edit, use

RE_Text [reText, TRUE], if you want to read correctly characters from another locale then

ANSI only.

property CurIndex: Integer;

Index of current item (for listbox, combobox) or button index pressed or dropped down (for

toolbar button, and only in appropriate event handler call).

You cannot use it to set or remove a selection in a multiple-selection list box, so you should set

option loNoExtendSel to true.

In OnClick event handler, CurIndex has not yet changed for listbox or combobox. Use

OnSelChange to respond to selection changes.

property Count: Integer;

Number of items (listbox, combobox, listview) or lines (multiline editbox, richedit control) or

buttons (toolbar). It is possible to assign a value to this property only for listbox control with

loNoData style and for list view control with lvoOwnerData style (virtual list box and list view).

property Items[Idx: Integer]: KOLString;

Obvious. Used with editboxes, listbox, combobox. With list view, use property LVItems

instead.

219

244

244

271

272

231

220

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

property ItemSelected[ItemIdx: Integer]: Boolean;

Returns True, if a line (in editbox) or an item (in listbox, combobox, listview) is selected. Can be

set only for listboxes. For listboxes, which are not multiselect, and for combo lists, it is possible

only to set to True, to change selection.

property ItemData[Idx: Integer]: DWORD;

Access to user-defined data, associated with the item of a list box and combo box.

property DroppedWidth: Integer;

Allows to change width of dropped down items list for combobox (only!) control.

property DroppedDown: Boolean;

Dropped down state for combo box. Set it to TRUE or FALSE to change dropped down state.

property BitBtnDrawMnemonic: Boolean;

Set this property to TRUE to provide correct drawing of bit btn control caption with '&'

characters (to remove such characters, and underline follow ones).

property TextShiftX: Integer;

Horizontal shift for bitbtn text when the bitbtn is pressed.

property TextShiftY: Integer;

Vertical shift for bitbtn text when the bitbtn is pressed.

property BitBtnImgIdx: Integer;

BitBtn image index for the first image in list view, used as bitbtn image. It is used only in case

when BitBtn is created with bboImageList option.

property BitBtnImgList: THandle;

BitBtn Image list. Assign image list handle to change it.

property DefaultBtn: Boolean;

Set this property to true to make control clicked when ENTER key is pressed. This property uses

OnMessage event of the parent form, storing it into fOldOnMessage field and calling in

chain. So, assign default button after setting OnMessage event for the form.

property CancelBtn: Boolean;

Set this property to true to make control clicked when escape key is pressed. This property uses

OnMessage event of the parent form, storing it into fOldOnMessage field and calling in

chain. So, assign cancel button after setting OnMessage event for the form.

270

270

270

270

221

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

property IgnoreDefault: Boolean;

Change this property to TRUE to ignore default button reaction on press ENTER key when a

focus is grabbed of the control. Default value is different for different controls. By default,

DefaultBtn ignored in memo, richedit (even if read-only).

property Color: TColor;

Property Color is one of the most common for all visual elements (like form, control etc.) Please

note, that standard GUI button can not change its color and the most characteristics of the

Font . Also, standard button can not become Transparent . Use bitbtn for such purposes.

Also, changing Color property for some kinds of control has no effect (rich edit, list view, tree

view, etc.). To solve this, use native (for such controls) color property, or call Perform method

with appropriate message to set the background color.

property Font: PGraphicTool;

If the Font property is not accessed, correspondent TGraphicTool object is not created and its

methods are not included into executable. Leaving properties Font and Brush untouched can

economy executable size a lot.

property Brush: PGraphicTool;

If not accessed, correspondent TGraphicTool object is not created and its methods are not

referenced. See also note on Font property.

property Ctl3D: Boolean;

Inheritable from parent controls to child ones.

property ModalResult: Integer;

Modal result. Set it to value<>0 to stop modal dialog. By agreement, value 1 corresponds

'OK', 2 - 'Cancel'. But it is totally by decision of yours how to interpret this value.

property Modal: Boolean;

TRUE, if the form is shown modal.

property ModalForm: PControl;

Form currently shown modal from this form or from Applet.

property WindowState: TWindowState;

Window state.

property Canvas: PCanvas;

Placeholder for Canvas: PCanvas. But in KOL, it is possible to create applets without canvases at

all. To do so, avoid using Canvas and use DC directly (which is passed in OnPaint event).

220

221 224

265

221

221

221

271

222

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

property IsApplet: Boolean;

Returns true, if the control is created using NewApplet (or CreateApplet).

property IsForm: Boolean;

Returns True, if the object is form window.

property IsMDIChild: Boolean;

Returns TRUE, if the object is MDI child form. In such case, IsForm also returns TRUE.

property IsControl: Boolean;

Returns True, is the control is control (not form or applet).

property IsButton: Boolean;

Returns True, if the control is button-like or containing buttons (button, bitbtn, checkbox,

radiobox, toolbar).

property HasBorder: Boolean;

Obvious. Form-aware.

property HasCaption: Boolean;

Obvious. Form-aware.

property CanResize: Boolean;

Obvious. Form-aware.

property StayOnTop: Boolean;

Obvious. Form-aware, but can be applied to controls.

property Border: ShortInt;

Distance between edges and child controls and between child controls by default (if methods

PlaceRight , PlaceDown , PlaceUnder , ResizeParent , ResizeParentRight ,

ResizeParentBottom are called).

Originally was named Margin , now I recommend to use the name 'Border' to avoid confusion

with MarginTop , MarginBottom , MarginLeft and MarginRight properties.

Initial value is always 2. Border property is used in realigning child controls (when its Align

property is not caNone), and value of this property determines size of borders between edges

of children and its parent and between aligned controls too.

See also properties MarginLeft , MarginRight , MarginTop , MarginBottom .

property Margin: ShortInt;

222

263 263 263 264 264

264

222

223 223 223 223

245

223 223 223 223

223

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

Old name for property Border .

property MarginTop: ShortInt;

Additional distance between true window client top and logical top of client rectangle. This value

is added to Top of rectangle, returning by property ClientRect . Together with other

margins and property Border , this property allows to change view of form for case, that

Align property is used to align controls on parent (it is possible to provide some distance

from child controls to its parent, and between child controls.

Originally this property was introduced to compensate incorrect ClientRect property,

calculated for some types of controls.

See also properties Border , MarginBottom , MarginLeft , MarginRight .

property MarginBottom: ShortInt;

The same as MarginTop , but a distance between true window Bottom of client rectangle and

logical bottom one. Take in attention, that this value should be POSITIVE to make logical bottom

edge located above true edge.

See also properties Border , MarginTop , MarginLeft , MarginRight .

property MarginLeft: ShortInt;

The same as MarginTop , but a distance between true window Left of client rectangle and

logical left edge.

See also properties Border , MarginTop , MarginRight , MarginBottom .

property MarginRight: ShortInt;

The same as MarginLeft , but a distance between true window Right of client rectangle and

logical bottom one. Take in attention, that this value should be POSITIVE to make logical right

edge located left of true edge.

See also properties Border , MarginTop , MarginLeft , MarginBottom .

property Tabstop: Boolean;

True, if control can be focused using tabulating between controls. Set it to False to make control

unavailable for keyboard, but only for mouse.

property TabOrder: SmallInt;

Order of tabulating of controls. Initially, TabOrder is equal to creation order of controls. If

TabOrder changed, TabOrder of all controls with not less value of one is shifted up. To place

control before another, assign TabOrder of one to another. For example:
Button1.TabOrder := EditBox1.TabOrder;

In code above, Button1 is placed just before EditBox1 in tabulating order (value of TabOrder of

EditBox1 is incremented, as well as for all follow controls).

property Focused: Boolean;

222

212 248

222

245

248

222 223 223 223

223

222 223 223 223

223 212

222 223 223 223

223

222 223 223 223

224

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

True, if the control is current on form (but check also, what form itself is focused). For form it is

True, if the form is active (i.e. it is foreground and capture keyboard). Set this value to True to

make control current and focused (if applicable).

property TextAlign: TTextAlign;

Text horizontal alignment. Applicable to labels, buttons, multi-line edit boxes, panels.

property VerticalAlign: TVerticalAlign;

Text vertical alignment. Applicable to buttons, labels and panels.

property WordWrap: Boolean;

TRUE, if this is a label, created using NewWordWrapLabel.

property ShadowDeep: Integer;

Deep of a shadow (for label effect only, created calling NewLabelEffect).

property CannotDoubleBuf: Boolean;

property DoubleBuffered: Boolean;

Set it to true for some controls, which are flickering in repainting (like label effect). Slow, and

requires additional code. This property is inherited by all child controls.

Note: RichEdit control can not become DoubleBuffered.

property Transparent: Boolean;

Set it to true to get special effects. Transparency also uses DoubleBuffered and inherited by

child controls.

Please note, that some controls can not be shown properly, when Transparent is set to True for

it. If You want to make edit control transparent (e.g., over gradient filled panel), handle its

OnChanged property and call there Invalidate to provide repainting of edit control content.

Note also, that for RichEdit control property Transparent has no effect (as well as

DoubleBuffered). But special property RE_Transparent is designed especially for RichEdit

control (it works fine, but with great number of flicks while resizing of a control). Another note is

about Edit control. To allow editing of transparent edit box, it is necessary to invalidate it for

every pressed character. Or, use Ed_Transparent property instead.

property Ed_Transparent: Boolean;

Use this property for editbox to make it really Transparent . Remember, that though

Transparent property is inherited by child controls from its parent, this is not so for

Ed_Transparent. So, it is necessary to set Ed_Transparent to True for every edit control explicitly.

property AlphaBlend: Byte;

219

219

347

224

248

224 245

224

224

224

225

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

If assigned to 0..254, makes window (form or control) semi-transparent (Win2K only).

Depending on value assigned, it is possible to adjust transparency level (0 - totally transparent,

255 - totally opaque).

Note: from XP, any control can be alpha blended!

property LookTabKeys: TTabKeys;

Set of keys which can be used as tabulation keys in a control.

property SubClassName: KOLString;

Name of window class - unique for every window class in every run session of a program.

property CloseQueryReason: TCloseQueryReason;

Reason why OnClose or OnQueryEndSession called.

property UpdateRgn: HRgn;

A handle of update region. Valid only in OnPaint method. You can use it to improve painting

(for speed), if necessary. When UpdateRgn is obtained in response to WM_PAINT message,

value of the property EraseBackground is used to pass it to the API function GetUpdateRgn. If

UpdateRgn = 0, this means that entire window should be repainted. Otherwise, You (e.g.) can

check if the rectangle is in clipping region using API function RectInRegion.

property EraseBackground: Boolean;

This value is used to pass it to the API function GetUpdateRgn, when UpadateRgn property is

obtained first in responce to WM_PAINT message. If EraseBackground is set to True, system is

responsible for erasing background of update region before painting. If not (default), the entire

region invalidated should be painted by your event handler.

property RightClick: Boolean;

Use this property to determine which mouse button was clicked (applicable to toolbar in the

OnClick event handler).

property MinSizePrev: Integer;

Minimal allowed (while dragging splitter) size of previous control for splitter (see NewSplitter

).

property SplitMinSize1: Integer;

The same as MinSizePrev

property MinSizeNext: Integer;

Minimal allowed (while dragging splitter) size of the rest of parent of splitter or of

SecondControl (see NewSplitter).

270 270

271

225

271

348

225

226 348

226

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

property SplitMinSize2: Integer;

The same as MinSizeNext .

property SecondControl: PControl;

Second control to check (while dragging splitter) if its size not less than SplitMinSize2 (see

NewSplitter). By default, second control is not necessary, and needed only in rare case when

SecondControl can not be determined automatically to restrict splitter right (bottom) position.

property Dragging: Boolean;

True, if splitter control is dragging now by user with left mouse button. Also, this property can be

used to detect if the control is dragging with mouse (after calling DragStartEx method).

property ThreeButtonPress: Boolean;

GDK (*nix) only. TRUE, if 3 button press detected. Check this flag in OnMouseDblClk event

handler. If 3rd button click is done for a short period of time after the double click, the control

receives OnMouseDblClk the second time and this flag is set. (Applicable to the GDK and

other Linux systems).

property MouseInControl: Boolean;

This property can return True only if OnMouseEnter / OnMouseLeave event handlers are

set for a control (or, for BitBtn, property Flat is set to True. Otherwise, False is returned

always.

property Flat: Boolean;

Set it to True for BitBtn, to provide either flat border for a button or availability of

"highlighting" (correspondent to glyph index 4).

Note: this can work incorrectly a bit under win95 without comctl32.dll updated. Therefore,

application will launch. To enforce correct working even under Win95, use your own timer, which

event handler checks for mouse over bitbtn control, e.g.:

 procedure TForm1.Timer1Timer(Sender: PObj);
 var P: TPoint;
 begin
 if not BitBtn1.MouseInControl then Exit;
 GetCursorPos(P);
 P := BitBtn1.Screen2Client(P);
 if not PtInRect(BitBtn1.ClientRect, P) then
 begin
 BitBtn1.Flat := FALSE;
 BitBtn1.Flat := TRUE;
 end;
 end;

property RepeatInterval: Integer;

If this property is set to non-zero, it is interpreted (for BitBtn only) as an interval in milliseconds

between repeat button down events, which are generated after first mouse or button click and

225

226

255

273

273

273 273

226

226

227

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

until button is released. Though, if the button is pressed with keyboard (with space key),

RepeatInterval value is ignored and frequency of repeatitive clicking is determined by user

keyboard settings only.

property Progress: Integer index((PBM_SETPOS or $8000) shl 16) or PBM_GETPOS;

Only for ProgressBar.

property MaxProgress: Integer index((PBM_SETRANGE32 or $8000) shl 16) or
PBM_GETRANGE;

Only for ProgressBar. 100 is the default value.

property ProgressColor: TColor;

Only for ProgressBar.

property ProgressBkColor: TColor;

Obsolete. Now the same as Color .

property StatusText[Idx: Integer]: KOLString;

Only for forms to set/retrieve status text to/from given status panel. Panels are enumerated

from 0 to 254, 255 is to indicate simple status bar. Size grip in right bottom corner of status

window is displayed only if form still CanResize .

When a status text is set first time, status bar window is created (always aligned to bottom), and

form is resizing to preset client height. While status bar is showing, client height value is returned

without height of status bar. To remove status bar, call RemoveStatus method for a form.

By default, text is left-aligned within the specified part of a status window. You can embed tab

characters (#9) in the text to center or right-align it. Text to the right of a single tab character

is centered, and text to the right of a second tab character is right-aligned.

If You use separate status bar onto several panels, these automatically align its widths to the

same value (width divided to number of panels). To adjust status panel widths for every panel,

use property StatusPanelRightX .

property SimpleStatusText: KOLString;

Only for forms to set/retrive status text to/from simple status bar. Size grip in right bottom

corner of status window is displayed only if form CanResize .

When status text set first time, (simple) status bar window is created (always aligned to bottom),

and form is resizing to preset client height. While status bar is showing, client height value is

returned without height of status bar. To remove status bar, call RemoveStatus method for a

form.

By default, text is left-aligned within the specified part of a status window. You can embed tab

characters (#9) in the text to center or right-align it. Text to the right of a single tab character

is centered, and text to the right of a second tab character is right-aligned.

221

264

222

256

219

228

264

222

256

219

228

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

property StatusCtl: PControl;

Pointer to Status bar control. To "create" child controls on the status bar, first create it as a child

of form, for instance, and then change its property Parent , e.g.:

 var Progress1: PControl;
 ...
 Progress1 := NewProgressBar(Form1);
 Progress1.Parent := Form1.StatusCtl;

(If you use MCK, code should be another a bit, and in this case it is possible to create and adjust

the control at design-time, and at run-time change its parent control. E.g. (Progress1 is created

at run-time here too):
 Progress1 := NewProgressBar(Form);

 Progress1.Parent := Form.StatusCtl;).

Do not forget to provide StatusCtl to be existing first (e.g. assign one-space string to

SimpleStatusText property of the form, for MCK do so using Object Inspector). Please note

that not only a form can have status bar but any other control too!

property SizeGrip: Boolean;

Size grip for status bar. Has effect only before creating window.

property StatusPanelRightX[Idx: Integer]: Integer;

Use this property to adjust status panel right edges (if the status bar is divided onto several

subpanels). If the right edge for the last panel is set to -1 (by default) it is expanded to the right

edge of a form window. Otherwise, status bar can be shorter then form width.

property StatusWindow: HWND;

Provided for case if You want to use API direct message sending to status bar.

property Color1: TColor;

Top line color for GradientPanel .

property Color2: TColor;

Bottom line color for GradientPanel , or shadow color for LabelEffect . (If clNone, shadow

color for LabelEffect is calculated as a mix bitween TextColor and clBlack).

property GradientStyle: TGradientStyle ;

Styles other then gsVertical and gsHorizontal has effect only for gradient panel, created by

NewGradientPanelEx.

property GradientLayout: TGradientLayout ;

Has only effect for gradient panel, created by NewGradientPanelEx. Ignored for styles gsVertical

and gsHorizontal.

212

227

264

212 347

347 347

208

208

229

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

property ImageListSmall: PImageList ;

Image list with small icons used with List View control. If not set, last added (i.e. created with a

control as an owner) image list with small icons is used.

property ImageListNormal: PImageList;

Image list with normal size icons used with List View control (or with icons for BitBtn, TreeView

or TabControl). If not set, last added (i.e. created with a control as an owner) image list is used.

property ImageListState: PImageList ;

Image list used as a state images list for ListView or TreeView control.

property Pages[Idx: Integer]: PControl;

Returns controls, which can be used as parent for controls, placed on different pages of a tab

control. Use it like in follows example: Label1 := NewLabel(TabControl1.Pages[0], 'Label1'); To

find number of pages available, check out Count property of the tab control. Pages are

enumerated from 0 to Count - 1, as usual.

property TC_Pages[Idx: Integer]: PControl;

The same as above.

property TC_Items[Idx: Integer]: KOLString;

Text , displayed on tab control tabs.

property TC_Images[Idx: Integer]: Integer;

Image index for a tab in tab control.

property TC_ItemRect[Idx: Integer]: TRect;

Item rectangle for a tab in tab control.

property LVStyle: TListViewStyle ;

ListView style of view. Can be changed at run time.

property LVOptions: TListViewOptions;

ListView options. Can be changed at run time.

property LVTextColor: TColor;

ListView text color. Use it instead of Font.Color.

property LVTextBkColor: TColor;

178

178

219

219

219

207

230

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

ListView background color for text.

property LVBkColor: TColor;

ListView background color. Use it instead of Color .

property LVColCount: Integer;

ListView (additional) column count. Value 0 means that there are no columns (single item text /

icon is used). If You want to provide several columns, first call LVColAdd to "insert" column 0,

i.e. to provide header text for first column (with index 0). If there are no column, nothing will be

shown in lvsDetail / lvsDetailNoHeader view style.

property LVColWidth[Item: Integer]: Integer;

Retrieves or changes column width. For lvsList view style, the same width is returned for all

columns (ColIdx is ignored). It is possible to use special values to assign to a property:

LVSCW_AUTOSIZE - Automatically sizes the column

LVSCW_AUTOSIZE_USEHEADER - Automatically sizes the column to fit the header text

To set coumn width in lvsList view mode, column index must be -1 (and Width to set must be

in range 0..32767 always).

property LVColText[Idx: Integer]: KOLString;

Allows to get/change column header text at run time.

property LVColAlign[Idx: Integer]: TTextAlign ;

Column text aligning.

property LVColImage[Idx: Integer]: Integer;

Only starting from comctrl32.dll of version 4.70 (IE4+). Allows to set an image for list view

column itself from the ImageListSmall .

property LVColOrder[Idx: Integer]: Integer;

Only starting from comctrl32.dll of version 4.70 (IE4+). Allows to set visual order of the list view

column from the ImageListSmall . This value does not affect the index, by which the column is

still accessible in the column array.

property LVCount: Integer;

Returns item count for ListView control. It is possible to use Count property instead when

obtaining of item count is needed only. But this this property allows also to set actual count of

list view items when a list view is virtual.

property LVCurItem: Integer;

Returns first selected item index in a list view. See also LVNextSelected , LVNextItem and

221

257

212

206

229

229

219

257 257

231

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

LVFocusItem functions.

property LVFocusItem: Integer;

Returns focused item index in a list view. See also LVCurItem .

property LVItemState[Idx: Integer]: TListViewItemState;

Access to list view item states set [lvisBlend, lvisHighlight, lvisFocus, lvisSelect]. When assign new

value to the property, it is possible to use special index value -1 to change state for all items for

a list view (but only when lvoMultiselect style is applied to the list view, otherwise index -1 is

referring to the last item of the list view).

property LVItemIndent[Idx: Integer]: Integer;

Item indentation. Indentation is calculated as this value multiplied to image list ImgWidth value

(Image list must be applied to list view). Note: indentation supported only if IE3.0 or higher

installed.

property LVItemStateImgIdx[Idx: Integer]: Integer;

Access to state image of the item. Use index -1 to assign the same state image index to all items

of the list view at once (fast). Option lvoCheckBoxes just means, that control itself creates special

inner image list for two state images. Later it is possible to examine checked state for items or

set checked state programmatically by changing LVItemStateImgIdx[] property. Value 1

corresponds to unchecked state, 2 to checked. Value 0 allows to remove checkbox at all. So, to

check all added items by default (e.g.), do following:
 ListView1.LVItemStateImgIdx[-1] := 2;

Use 1-based index of the image in image list ImageListState . Value 0 reserved to use as "no

state image". Values 1..15 can be used only - this is the Windows restriction on state images.

property LVItemOverlayImgIdx[Idx: Integer]: Integer;

Access to overlay image of the item. Use index -1 to assign the same overlay image to all items

of the list view at once (fast).

property LVItemData[Idx: Integer]: DWORD;

Access to user defined data, assiciated with the item of the list view.

property LVSelCount: Integer;

Returns number of items selected in listview.

property LVItemImageIndex[Idx: Integer]: Integer;

Image index of items in listview. When an item is created (using LVItemAdd or

LVItemInsert), image index 0 is set by default (not -1 like in VCL!).

231

230

229

258

258

232

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

property LVItems[Idx, Col: Integer]: KOLString;

Access to List View item text.

property LVItemPos[Idx: Integer]: TPoint;

Position of List View item (can be changed in icon or small icon view).

property LVTopItem: Integer;

Returns index of topmost visible item of ListView in lvsList view style.

property LVPerPage: Integer;

Returns the number of fully-visible items if successful. If the current view is icon or small icon

view, the return value is the total number of items in the list view control.

property LVItemHeight: Integer;

property TVSelected: THandle;

Returns or sets currently selected item handle in tree view.

property TVDropHilighted: THandle;

Returns or sets item, which is currently highlighted as a drop target.

property TVDropHilited: THandle;

The same as TVDropHilighted .

property TVFirstVisible: THandle;

Returns or sets given item to top of tree view.

property TVIndent: Integer;

The amount, in pixels, that child items are indented relative to their parent items.

property TVVisibleCount: Integer;

Returns number of fully (not partially) visible items in tree view.

property TVRoot: THandle;

Returns handle of root item in tree view (or 0, if tree is empty).

property TVItemChild[Item: THandle]: THandle;

Returns first child item for given one.

property TVItemHasChildren[Item: THandle]: Boolean;

212

232

233

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

TRUE, if an Item has children. Set this value to true if you want to force [+] sign appearing left

from the node, even if there are no subnodes added to the node yet.

property TVItemChildCount[Item: THandle]: Integer;

Returns number of node child items in tree view.

property TVItemNext[Item: THandle]: THandle;

Returns next sibling item handle for given one (or 0, if passed item is the last child for its parent

node).

property TVItemPrevious[Item: THandle]: THandle;

Returns previous sibling item (or 0, if the is no such item).

property TVItemNextVisible[Item: THandle]: THandle;

Returns next visible item (passed item must be visible too, to determine, if it is really visible, use

property TVItemRect or TVItemVisible .

property TVItemPreviousVisible[Item: THandle]: THandle;

Returns previous visible item.

property TVItemParent[Item: THandle]: THandle;

Returns parent item for given one (or 0 for root item).

property TVItemText[Item: THandle]: KOLString;

Text of tree view item.

property TVItemRect[Item: THandle; TextOnly: Boolean]: TRect;

Returns rectangle, occupied by an item in tree view.

property TVItemVisible[Item: THandle]: Boolean;

Returs True, if item is visible in tree view. It is also possible to assign True to this property to

ensure that a tree view item is visible (if False is assigned, this does nothing).

property TVRightClickSelect: Boolean;

Set this property to True to allow change selection to an item, clicked with right mouse button.

property TVEditing: Boolean;

Returns True, if tree view control is editing its item label.

property TVItemBold[Item: THandle]: Boolean;

233 233

219

234

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

True, if item is bold.

property TVItemCut[Item: THandle]: Boolean;

True, if item is selected as part of "cut and paste" operation.

property TVItemDropHighlighted[Item: THandle]: Boolean;

True, if item is selected as drop target.

property TVItemDropHilited[Item: THandle]: Boolean;

The same as TVItemDropHighlighted .

property TVItemExpanded[Item: THandle]: Boolean;

True, if item's list of child items is currently expanded. To change expanded state, use method

TVExpand .

property TVItemExpandedOnce[Item: THandle]: Boolean;

True, if item's list of child items has been expanded at least once.

property TVItemSelected[Item: THandle]: Boolean;

True, if item is selected.

property TVItemImage[Item: THandle]: Integer;

Image index for an item of tree view. To tell that there are no image set, use index -2 (value -1 is

reserved for callback image).

property TVItemSelImg[Item: THandle]: Integer;

Image index for an item of tree view in selected state. Use value -2 to provide no image, -1 used

for callback image.

property TVItemOverlay[Item: THandle]: Integer;

Overlay image index for an item in tree view. Values 1..15 can be used only - this is the Windows

restriction on overlay images.

property TVItemStateImg[Item: THandle]: Integer;

State image index for an item in tree view. Use 1-based index of the image in image list

ImageListState . Value 0 reserved to use as "no state image".

property TVItemData[Item: THandle]: Pointer;

Stores any program-defined pointer with the item.

234

260

229

235

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

property TBCurItem: Integer;

Same as CurItem.

property TBButtonCount: Integer;

Returns count of buttons on toolbar. The same as Count .

property TBBtnImgWidth: Integer;

Custom toolbar buttons width. Set it before assigning buttons bitmap. Changing this property

after assigning the bitmap has no effect.

property TBButtonEnabled[BtnID: Integer]: Boolean;

Obvious.

property TBButtonVisible[BtnID: Integer]: Boolean;

Allows to hide/show some of toolbar buttons.

property TBButtonChecked[BtnID: Integer]: Boolean;

Allows to determine 'checked' state of a button (e.g., radio-button), and to check it

programmatically.

property TBButtonMarked[BtnID: Integer]: Boolean;

Returns True if toolbar button is marked (highlighted). Allows to highlight buttons assigning True

to this value.

property TBButtonPressed[BtnID: Integer]: Boolean;

Allows to detrmine if toolbar button (given by its command ID) pressed, and press/unpress it

programmatically.

property TBButtonText[BtnID: Integer]: KOLString;

Obtains toolbar button text and allows to change it. Be sure that text is not empty for all buttons,

if You want for it to be shown (if at least one button has empty text, no text labels will be shown

at all). At least set it to ' ' for buttons, which You do not want to show labels, if You want from

other ones to have it.

property TBButtonImage[BtnID: Integer]: Integer;

Allows to access/change button image. Do not read this property for separator buttons,

returning value is not proper. If you do not know, is the button a separator, using function

below.

property TBButtonRect[BtnID: Integer]: TRect;

219

236

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

Obtains rectangle occupied by toolbar button in toolbar window. (It is not possible to obtain

rectangle for buttons, currently not visible). See also function ToolbarButtonRect.

property TBButtonWidth[BtnID: Integer]: Integer;

Allows to obtain / change toolbar button width.

property TBButtonLParam[const Idx: Integer]: DWORD;

Allows to access/change LParam. Dufa

property TBButtonsMinWidth: Integer;

Allows to set minimal width for all toolbar buttons.

property TBButtonsMaxWidth: Integer;

Allows to set maximal width for all toolbar buttons.

property TBRows: Integer;

Returns number of rows for toolbar and allows to try to set desired number of rows (but system

can set another number of rows in some cases). This property has no effect if tboWrapable style

not present in Options when toolbar is created.

property DateTime: TDateTime;

DateTime for DateTimePicker control only.

property Date: TDateTime;

Date only for DateTimePicker control only.

property Time: TDateTime;

Time only for DateTimePicker control only.

property SystemTime: TSystemTime;

Date and Time as TSystemTime. When assing, use year 0 to set "no value".

property DateTimeRange: TDateTimeRange;

DateTimePicker range. If first date in the agrument assigned is NAN, minimum system allowed

value is used as the left bound, and if the second is NAN, maximum system allowed is used as

the right one.

property SBMin: Longint;

Minimum scrolling area position.

property SBMax: Longint;

Maximum scrolling area position (size of the text or image to be scrolling). For case when

SCROLL_OLD defined, this value should be set as scrolling object size without SBPageSize .

236 236

237

237

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

property SBMinMax: TPoint;

The property to adjust SBMin and SBMax for a single call (set X to a minimum and Y to a

maximum value).

property SBPosition: Integer;

Current scroll position. When set, should be between SBMin and SBMax - max(0,

SBPageSize -1)

property SBPageSize: Integer;

property Checked: Boolean;

For checkbox and radiobox - if it is checked. Do not assign value for radiobox - use

SetRadioChecked instead.

property Check3: TTriStateCheck;

State of checkbox with BS_AUTO3STATE style.

property CustomData: Pointer;

Can be used to exend the object when new type of control added. Memory, pointed by this

pointer, released automatically in the destructor.

property CustomObj: PObj ;

Can be used to exend the object when new type of control added. Object, pointed by this

pointer, released automatically in the destructor.

property MDIClient: PControl;

For MDI forms only: returns MDI client window control, containng all MDI children. Use this

window to send specific messages to rule MDI children.

property LBTopIndex: Integer;

Index of the first visible item in a list box

property MaxTextSize: DWORD;

This property valid also for simple edit control, not only for RichEdit. But for usual edit control,

maximum text size available is 32K. For RichEdit, limit is 4Gb. By default, RichEdit is limited to

32767 bytes (to set maximum size available to 2Gb, assign MaxInt value to a property). Also, to

get current text size of RichEdit, use property TextSize or RE_TextSize [].

property TextSize: Integer;

Common for edit and rich edit controls property, which returns size of text in edit control. Also,

for any other control (or form, or applet window) returns size (in characters) of Caption or

236 236

236 236

237

265

92

237 238

219

238

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

Text (what is, the same property actually).

property RE_TextSize[Units: TRichTextSize]: Integer;

For RichEdit control, it returns text size, measured in desired units (rtsChars - characters,

including OLE objects, counted as a single character; rtsBytes - presize length of text image (if it

would be stored in file or stream). Please note, that for RichEdit1.0, only size in characters can be

obtained.

property RE_CharFmtArea: TRichFmtArea;

By default, this property is raSelection. Changing it, You determine in for which area characters

format is applyed, when changing character formatting properties below (not paragraph

formatting).

property RE_CharFormat: TCharFormat;

In differ to follow properties, which allow to control certain formatting attributes, this property

provides low level access for formatting current character area (see RE_CharFmtArea). It

returns TCharFormat structure, filled in with formatting attributes, and by assigning another

value to this property You can change desired attributes as You wish. Even if RichEdit1.0 is used,

TCharFormat2 is returned (but extended fields are ignored for RichEdit1.0).

property RE_Font: PGraphicTool;

Font of the first character in current selection (when retrieve). When set (or subproperties of

RE_Font are set), all font attributes are applied to entire area . To apply only needed

attributes, use another properties: RE_FmtBold , RE_FmtItalic , RE_FmtStrikeout ,

RE_FmtUnderline , RE_FmtName, etc.

Note, that font size is measured in twips, which is about 1/10 of pixel.

property RE_FmtBold: Boolean;

Formatting flag. When retrieve, returns True, if fsBold style RE_Font.FontStyle is valid for a first

character in the selection. When set, changes fsBold style (True - set, False - reset) for all

characters in area .

property RE_FmtBoldValid: Boolean;

property RE_FmtItalic: Boolean;

Formatting flag. Like RE_FmtBold , when retrieving, shows, is fsItalic style valid for the first

character of the selection, and when set, changes only fsItalic style for an area .

property RE_FmtItalicValid: Boolean;

property RE_FmtStrikeout: Boolean;

219

238

221

238

238 238 238

239

238

238

238

239

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

Formatting flag. Like RE_FmtBold , when retrieving, shows, is fsStrikeout style valid for the first

selected character, and when set, changes only fsStrikeout style for an area .

property RE_FmtStrikeoutValid: Boolean;

property RE_FmtUnderline: Boolean;

Formatting flag. Like RE_FmtBold , when retrieving, shows, is fsUnderline style valid for the

first selected character, and when set, changes fsUnderline style for an area .

property RE_FmtUnderlineValid: Boolean;

property RE_FmtUnderlineStyle: TRichUnderline;

Extended underline style. To check, if this property is valid for entire selection, examine

RE_FmtUnderlineValid value.

property RE_FmtProtected: Boolean;

Formatting flag. When retrieving, shows, is the first character of the selection is protected from

changing it by user (True) or not (False). To get know, if retrived value is valid for entire

selection, check the property RE_FmtProtectedValid . When set, makes all characters in

area protected (True) or not (False).

property RE_FmtProtectedValid: Boolean;

True, if property RE_FmtProtected is valid for entire selection, when retrieving it.

property RE_FmtHidden: Boolean;

For RichEdit3.0, makes text hidden (not displayed).

property RE_FmtHiddenValid: Boolean;

Returns True, if RE_FmtHidden style is valid for entire selection.

property RE_FmtLink: Boolean;

Returns True, if the first selected character is a part of link (URL).

property RE_FmtLinkValid: Boolean;

property RE_FmtFontSize: Integer index(12 shl 16) or CFM_SIZE;

Formatting value: font size, in twips (1/1440 of an inch, or 1/20 of a printer's point, or about

1/10 of pixel). When retrieving, returns RE_Font.FontHeight. When set, changes font size for

entire area (but does not change other font attributes).

238

238

238

238

239

239

238

239

239

238

240

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

property RE_FmtFontSizeValid: Boolean;

Returns True, if property RE_FmtFontSize is valid for entire selection, when retrieving it.

property RE_FmtAutoBackColor: Boolean;

True, when automatic back color is used.

property RE_FmtAutoBackColorValid: Boolean;

property RE_FmtFontColor: Integer index(20 shl 16) or CFM_COLOR;

Formatting value (font color). When retrieving, returns RE_Font.Color. When set, changes font

color for entire area (but does not change other font attributes).

property RE_FmtFontColorValid: Boolean;

Returns True, if property RE_FmtFontColor valid for entire selection, when retrieving it.

property RE_FmtAutoColor: Boolean;

True, when automatic text color is used (in such case, RE_FmtFontColor assignment is ignored

for current area).

property RE_FmtAutoColorValid: Boolean;

property RE_FmtBackColor: Integer index((64 + 32) shl 16) or CFM_BACKCOLOR;

Formatting value (back color). Only available for Rich Edit 2.0 and higher. When set, changes

background color for entire area (but does not change other font attributes).

property RE_FmtBackColorValid: Boolean;

property RE_FmtFontOffset: Integer index(16 shl 16) or CFM_OFFSET;

Formatting value (font vertical offset from baseline, positive values correspond to subscript).

When retrieving, returns offset for first character in the selection. When set, changes font offset

for entire area . To get know, is retrieved value valid for entire selction, check

RE_FmtFontOffsetValid property.

property RE_FmtFontOffsetValid: Boolean;

Returns True, if property RE_FmtFontOffset is valid for entire selection, when retrieving it.

property RE_FmtFontCharset: Integer index(25 shl 16) or CFM_CHARSET;

Returns charset for first character in current selection, when retrieved (and to get know, if this

value is valid for entire selection, check property RE_FmtFontCharsetValid). When set,

changes charset for all characters in area , but does not alter other formatting attributes.

239

238

240

240

238

238

240

240

241

238

241

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

property RE_FmtFontCharsetValid: Boolean;

Returns True, only if rerieved property RE_FmtFontCharset is valid for entire selection.

property RE_FmtFontName: KOLString;

Returns font face name for first character in the selection, when retrieved, and sets font name for

entire area , wnen assigned to (without changing of other formatting attributes). To get know,

if retrived font name valid for entire selection, examine property RE_FmtFontNameValid .

property RE_FmtFontNameValid: Boolean;

Returns True, only if the font name is the same for entire selection, thus is, if rerieved property

value RE_FmtFontName is valid for entire selection.

property RE_ParaFmt: TParaFormat;

Allows to retrieve or set paragraph formatting attributes for currently selected paragraph(s) in

RichEdit control. See also following properties, which allow to do the same for certain paragraph

format attributes separately.

property RE_TextAlign: TRichTextAlign ;

Returns text alignment for current selection and allows to change it (without changing other

formatting attributes).

property RE_TextAlignValid: Boolean;

Returns True, if property RE_TextAlign is valid for entire selection. If False, it is concerning

only start of selection.

property RE_Numbering: Boolean;

Returns True, if selected text is numbered (or has style of list with bullets). To get / change

numbering style, see properties RE_NumStyle and RE_NumBrackets .

property RE_NumStyle: TRichNumbering ;

Advanced numbering style, such as rnArabic etc. If You use it, do not change RE_Numbering

property simultaneously - this can cause changing style to rnBullets only.

property RE_NumStart: Integer;

Starting number for advanced numbering style. If this property is not set, numbering is starting

by default from 0. For rnLRoman and rnURoman this cause, that first item has no number to be

shown (ancient Roman people did not invent '0').

property RE_NumBrackets: TRichNumBrackets ;

240

238

241

241

206

241

241 241

209

241

209

242

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

Brackets style for advanced numbering. rnbPlain is default brackets style, and every time, when

RE_NumStyle is changed, RE_NumBrackets is reset to rnbPlain.

property RE_NumTab: Integer;

Tab between start of number and start of paragraph text. If too small too view number, number

is not displayed. (Default value seems to be sufficient though).

property RE_NumberingValid: Boolean;

Returns True, if RE_Numbering , RE_NumStyle , RE_NumBrackets , RE_NumTab ,

RE_NumStart properties are valid for entire selection.

property RE_Level: Integer;

Outline level (for numbering paragraphs?). Read only.

property RE_SpaceBefore: Integer;

Spacing before paragraph.

property RE_SpaceBeforeValid: Boolean;

True, if RE_SpaceBefore value is valid for all selected paragraph (if False, this value is valid

only for first paragraph.

property RE_SpaceAfter: Integer;

Spacing after paragraph.

property RE_SpaceAfterValid: Boolean;

True, only if RE_SpaceAfter value is valid for all selected paragraphs.

property RE_LineSpacing: Integer;

Linespacing in paragraph (this value is based on RE_SpacingRule property).

property RE_SpacingRule: Integer;

Linespacing rule. Do not know what is it.

property RE_LineSpacingValid: Boolean;

True, only if RE_LineSpacing and RE_SpacingRule values are valid for entire selection.

property RE_Indent: Integer index(20 shl 16) or PFM_OFFSET;

Returns left indentation for paragraph in current selection and allows to change it (without

changing other formatting attributes).

241

241 241 241 242

241

242

242

242

242 242

243

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

property RE_IndentValid: Boolean;

Returns True, if RE_Indent property is valid for entire selection.

property RE_StartIndent: Integer index(12 shl 16) or PFM_STARTINDENT;

Returns left indentation for first line in paragraph for current selection, and allows to change it

(without changing other formatting attributes).

property RE_StartIndentValid: Boolean;

Returns True, if property RE_StartIndent is valid for entire selection.

property RE_RightIndent: Integer index(16 shl 16) or PFM_RIGHTINDENT;

Returns right indent for paragraph in current selection, and allow to change it (without changing

other formatting attributes).

property RE_RightIndentValid: Boolean;

Returns True, if property RE_RightIndent is valid for entire selection only.

property RE_TabCount: Integer;

Number of tab stops in current selection. This value can not be set greater then

MAX_TAB_COUNT (32).

property RE_Tabs[Idx: Integer]: Integer;

Tab stops for RichEdit control.

property RE_TabsValid: Boolean;

Returns True, if properties RE_Tabs [] and RE_TabCount are valid for entire selection.

property RE_AutoKeyboard: Boolean;

True if autokeyboard on (lovely "feature" of automatic switching keyboard language when caret

is over another language text). For older RichEdit, is 'on' always, for newest - 'off' by default.

property RE_AutoFont: Boolean;

True if autofont on (automatic switching font when keyboard layout is changes). By default, is

'on' always. It is suggested to turn this option off for Unicode control.

property RE_AutoFontSizeAdjust: Boolean;

See IMF_AUTOFONTSIZEADJUST option in SDK: Font -bound font sizes are scaled from

insertion point size according to script. For example, Asian fonts are slightly larger than Western

ones. This option is turned on by default.

242

243

243

243 243

221

244

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

property RE_DualFont: Boolean;

See IMF_DUALFONT option in SDK: Sets the control to dual-font mode. Used for Asian language

support. The control uses an English font for ASCII text and a Asian font for Asian text.

property RE_UIFonts: Boolean;

See IMF_UIFONTS option in SDK: Use user-interface default fonts. This option is turned off by

default.

property RE_IMECancelComplete: Boolean;

See IMF_IMECANCELCOMPLETE option in SDK: This flag determines how the control uses the

composition string of an IME if the user cancels it. If this flag is set, the control discards the

composition string. If this flag is not set, the control uses the composition string as the result

string.

property RE_IMEAlwaysSendNotify: Boolean;

See IMF_IMEALWAYSSENDNOTIFY option in SDK: Controls how Rich Edit notifies the client

during IME composition:

0: No EN_CHANGED or EN_SELCHANGE notifications during undetermined state. Send

notification when final string comes in. (default)

1: Send EN_CHANGED and EN_SELCHANGE events during undetermined state.

property RE_OverwriteMode: Boolean;

This property allows to control insert/overwrite mode. First, to examine, if insert or overwrite

mode is current (but it is necessary either to access this property, at least once, immediately

after creating RichEdit control, or to assign event OnRE_InsOvrMode_Change to your

handler). Second, to set desired mode programmatically - by assigning value to this property

(You also have to initialize monitoring procedure by either reading RE_OverwriteMode property

or assigning handler to event OnRE_InsOvrMode_Change immediately following RichEdit

control creation).

property RE_DisableOverwriteChange: Boolean;

It is possible to disable switching between "insert" and "overwrite" mode by user (therefore,

event OnRE_InsOvrMode_Change continue works, but it just called when key INSERT is

pressed, though RE_OverwriteMode property is not actually changed if switching is disabled).

property RE_Text[Format: TRETextFormat; SelectionOnly: Boolean]: KOLString;

This property allows to get / replace content of RichEdit control (entire text or selection only).

Using different formats, it is possible to exclude or replace undesired formatting information

(see TRETextFormat specification). To get or replace entire text in reText mode (plain text only),

it is possible to use habitual for edit controls Text property.

Note: it is possible to append text to the end of RichEdit control using method Add , but only

if property RE_Text is accessed at least once:

277

277

277

244

219

255

245

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

RichEdit1.RE_Text[reText, True];

property RE_Error: Integer;

Contains error code, if access to RE_Text failed.

property RE_AutoURLDetect: Boolean;

If set to True, automatically detects URLs (and highlights it with blue color, applying fsItalic and

fsUnderline font styles (while typing and loading). Default value is False. Note: if event

OnRE_URLClick or event OnRE_OverURL are set, property RE_AutoURLDetect is set to True

automatically.

property RE_URL: PKOLChar;

Detected URL (valid in OnRE_OverURL and OnRE_URLClick event handlers).

property RE_Transparent: Boolean;

Use this property to make richedit control transparent, instead of Ed_Transparent or

Transparent . But do not place such transparent richedit control directly on form - it can be

draw incorrectly when form is activated and rich editr control is not current active control. Use at

least panel as a parent instead.

property RE_Zoom: TSmallPoint;

To set zooming for rich edit control (3.0 and above), pass X as numerator and Y as denominator.

Resulting X/Y must be between 1/64 and 64.

property PropInt[PropName: PKOLChar]: Integer;

For any windowed control: use it to store desired property in window properties.

property Align: TControlAlign;

Align style of a control. If this property is not used in your application, there are no additional

code added. Aligning of controls is made in KOL like in VCL. To align controls when initially

create ones, use "transparent" function SetAlign ("transparent" means that it returns @Self as

a result).

Note, that it is better not to align combobox caClient, caLeft or caRight (better way is to place a

panel with Border = 0 and EdgeStyle = esNone, align it as desired and to place a combobox

on it aligning caTop or caBottom). Otherwise, big problems could be under Win9x/Me, and

some delay could occur under any other systems.

Do not attempt to align some kinds of controls (like combobox) caLeft or caRight, this can cause

infinite recursion.

TControl methods

244

277 277

277 277

224

224

265

222

246

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

procedure Run(var AppletCtl: PControl);

Call this procedure to process messages loop of your program. Pass here pointer to applet

button object (if You have created it - see NewApplet) or your main form object of type

PControl (created using NewForm).

function FormGetIntParam: Integer;

Extracts the next integer parameter up to ',' or up to ';'

function FormGetColorParam: Integer;

Extracts the next integer parameter up to ',' or up to ';'

procedure FormGetStrParam;

Extracts the next string parameter up to ',' or up to ';' -> FormString

procedure FormCreateParameters(alphabet: PFormInitFuncArray; params: PAnsiChar);

Sets the initial alphabet and parameters with commands

procedure FormExecuteCommands(AForm: PControl; ControlPtrOffsets: PSmallIntArray);

Executes commands (with parameters) to the end or to ';'

procedure InitParented(AParent: PControl); virtual;

Initialization of visual object.

procedure InitOrthaned(AParentWnd: HWnd); virtual;

Initialization of visual object.

PROCEDURE InitParented(AParent: PControl; widget: PGtkWidget; need_eventbox:
Boolean); VIRTUAL;

Initialization of visual object.

procedure DestroyChildren;

Destroys children. Is called in destructor, and can be called in descending classes as earlier as

needed to prevent problems of too late destroying of visuals.

Note: since v 2.40, used only for case when a symbol NOT_USE_AUTOFREE4CONTROLS is

defined, otherwise all children are destroyed using common mechanism of Add2AutoFree.

function GetParentWnd(NeedHandle: Boolean): HWnd;

Returns handle of parent window.

function GetParentWindow: HWnd;

procedure SetEnabled(Value: Boolean);

Changes Enabled property value. Overriden here to change enabling status of a window.

function GetEnabled: Boolean;

Returns True, if Enabled . Overriden here to obtain real window state.

203

369

203 367

278

212

212

247

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

procedure SetVisible(Value: Boolean);

Sets Visible property value. Overriden here to change visibility of correspondent window.

procedure Set_Visible(Value: Boolean);

function GetVisible: Boolean;

Returns True, if correspondent window is Visible . Overriden to get visibility of real window,

not just value stored in object.

function Get_Visible: Boolean;

Returns True, if correspondent window is Visible , for forms and applet, or if fVisible flag is set,

for controls.

procedure SetCtlColor(Value: TColor);

Sets TControl's Color property value.

procedure SetBoundsRect(const Value: TRect);

Sets BoudsRect property value.

function GetBoundsRect: TRect;

Returns bounding rectangle.

function GetIcon: HIcon;

Returns Icon property. By default, if it is not set, returns Icon property of an Applet.

procedure CreateSubclass(var Params: TCreateParams; ControlClassName: PKOLChar);

Can be used in descending classes to subclass window with given standard Windows

ControlClassName - must be called after creating Params but before CreateWindow . Usually

it is called in overriden method CreateParams after calling of the inherited one.

procedure SetOnChar(const Value: TOnChar);

procedure SetOnDeadChar(const Value: TOnChar);

procedure SetOnKeyDown(const Value: TOnKey);

procedure SetOnKeyUp(const Value: TOnKey);

procedure SetHelpContext(Value: Integer);

procedure SetOnTVDelete(const Value: TOnTVDelete);

function DefaultBtnProc(var Msg: TMsg; var Rslt: Integer): Boolean;

constructor CreateParented(AParent: PControl);

Creates new instance of TControl object, calling InitParented

212

212

212

221

218 218

250

246

248

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

constructor CreateOrthaned(AParentWnd: HWnd);

Creates new instance of TControl object, calling InitOrthaned

CONSTRUCTOR CreateParented(AParent: PControl; widget: PGtkWidget; need_eventbox:
Boolean);

Creates new instance of TControl object, calling InitParented

destructor Destroy; virtual;

Destroyes object. First of all, destructors for all children are called.

function GetWindowHandle: HWnd;

Returns window handle. If window is not yet created, method CreateWindow is called.

procedure CreateChildWindows;

Enumerates all children recursively and calls CreateWindow for all of these.

function ChildIndex(Child: PControl): Integer;

Returns index of given child.

procedure MoveChild(Child: PControl; NewIdx: Integer);

Moves given Child into new position.

procedure EnableChildren(Enable, Recursive: Boolean);

Enables (Enable = TRUE) or disables (Enable = FALSE) all the children of the control. If Recursive

= TRUE then all the children of all the children are enabled or disabled recursively.

function ClientRect: TRect;

Client rectangle of TControl. Contrary to VCL, for some classes (e.g. for graphic controls) can be

relative not to itself, but to top left corner of the parent's ClientRect rectangle.

function ControlRect: TRect;

Absolute bounding rectangle relatively to nearest Windowed parent client rectangle (at least

to a form, but usually to a Parent). Useful while drawing on device context, provided by such

Windowed parent. For form itself is the same as BoundsRect .

function ControlAtPos(X, Y: Integer; IgnoreDisabled: Boolean): PControl;

Searches control at the given position (relatively to top left corner of the ClientRect).

procedure Invalidate;

Invalidates rectangle, occupied by the visual (but only if Showing = True).

246

246

250

250

213

212

213 212

248

249

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

procedure InvalidateEx;

Invalidates the window and all its children.

procedure InvalidateNC(Recursive: Boolean);

Invalidates the window and all its children including non-client area.

procedure Update;

Updates control's window and calls Update for all child controls.

procedure BeginUpdate;

Call this method to stop visual updates of the control until correspondent EndUpdate called

(pairs BeginUpdate - EndUpdate can be nested).

procedure EndUpdate;

See BeginUpdate .

function HandleAllocated: Boolean;

Returns True, if window handle is allocated. Has no sense for non-Windowed objects (but

now, the KOL has no non-Windowed controls).

procedure PaintBackground(DC: HDC; Rect: PRect);

Is called to paint background in given rectangle. This method is filling clipped area of the Rect

rectangle with Color , but only if global event Global_OnPaintBkgnd is not assigned. If

assigned, this one is called instead here.

This method made public, so it can be called directly to fill some device context's rectangle. But

remember, that independantly of Rect, top left corner of background piece will be located so, if

drawing is occure into ControlRect rectangle.

function ParentForm: PControl;

Returns parent form for a control (of @Self for form itself.

function FormParentForm: PControl;

Returns parent form for a control (of @Self for form itself. For a frame, returns frame panel

instead.

function MarkPanelAsForm: PControl;

Special function for MCK to mark panel as frame parent control.

function Client2Screen(const P: TPoint): TPoint;

Converts the client coordinates of a specified point to screen coordinates.

function Screen2Client(const P: TPoint): TPoint;

249

249

249

213

213

221

248

250

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

Converts screen coordinates of a specified point to client coordinates.

function CreateWindow: Boolean; virtual;

Creates correspondent window object. Returns True if success (if window is already created,

False is returned). If applied to a form, all child controls also allocates handles that time.

Call this method to ensure, that a hanle is allocated for a form, an application button or a control.

(It is not necessary to do so in the most cases, even if You plan to work with control's handle

directly. But immediately after creating the object, if You want to pass its handle to API function,

this can be helpful).

procedure Close;

Closes window. If a window is the main form, this closes application, terminating it. Also it is

possible to call Close method for Applet window to stop application.

procedure CursorLoad(Inst: Integer; ResName: PKOLChar);

Loads Cursor from the resource. See also comments for Icon property.

procedure IconLoad(Inst: Integer; ResName: PKOLChar);

See Icon property.

procedure IconLoadCursor(Inst: Integer; ResName: PKOLChar);

Loads Icon from the cursor resource. See also Icon property.

function AssignHelpContext(Context: Integer): PControl;

Assigns HelpContext and returns @ Self (can be used in initialization of a control in a chain of

"transparent" calls).

procedure CallHelp(Context: Integer; CtxCtl: PControl);

Method of a form or Applet. Call it to show help with the given context ID. If the Context = 0,

help contents is displayed. By default, WinHelp is used. To allow using HtmlHelp, call

AssignHtmlHelp global function. When WinHelp used, HelpPath variable can be assigned

directly. If HelpPath variable is not assigned, application name (and path) is used, with

extension replaced to '.hlp'.

procedure SelectAll;

Makes all the text in editbox or RichEdit, or all items in listbox selected.

procedure ReplaceSelection(const Value: KOLString; aCanUndo: Boolean);

Replaces selection (in edit, RichEdit). Unlike assigning new value to Selection property, it is

possible to specify, if operation can be undone.

218 218

218

218 218

218

218

218

219

251

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

Use this method or assigning value to a Selection property to format text initially in the rich

edit. E.g.:
 RichEdit1.RE_FmtBold := TRUE;
 RichEdit1.Selection := 'bolded text'#13#10;
 RichEdit1.RE_FmtBold := FALSE;
 RichEdit1.RE_FmtItalic := TRUE;
 RichEdit1.Selection := 'italized text';

...

procedure DeleteLines(FromLine, ToLine: Integer);

Deletes lines from FromLine to ToLine (inclusively, i.e. 0 to 0 deletes one line with index 0).

Current selection is restored as possible.

function Item2Pos(ItemIdx: Integer): DWORD;

Only for edit controls: converts line index to character position.

function Pos2Item(Pos: Integer): DWORD;

Only for edit controls: converts character position to line index.

function SavePosition: TEditPositions;

Only for edit controls: saves current editor selection and scroll positions. To restore position, use

RestorePosition with a structure, containing saved position as a parameter.

procedure RestorePosition(const p: TEditPositions);

Call RestorePosition with a structure, containing saved position as a parameter (this structure

filled in in SavePosition method). If you set RestoreScroll to FALSE, only selection is restored,

without scroll position.

procedure UpdatePosition(var p: TEditPositions; FromPos, CountInsertDelChars,
CountInsertDelLines: Integer);

If you called SavePosition and then make some changes in the edit control, calling

RestorePosition will fail if chages are affecting selection size. The problem can be solved

updating saved position info using this method. Pass a count of inserted characters and lines as a

positive number and a count of deleted characters as a negative number here.

CountInsertDelLines is optional paramters: if you do not specify it, only selection is fixed.

function EditTabChar: PControl;

Call this method (once) to provide insertion of tab character (code #9) when tab key is pressed

on keyboard.

function IndexOf(const S: KOLString): Integer;

Works for the most of control types, though some of those have its own methods to search

given item. If a control is not list box or combobox, item is finding by enumerating all the

Items one by one. See also SearchFor method.

219

251

251

251

251

219 252

252

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

function SearchFor(const S: KOLString; StartAfter: Integer; Partial: Boolean):
Integer;

Works for the most of control types, though some of those have its own methods to search

given item. If a control is not list box or combobox, item is finding by enumerating all the

Items one by one. See also IndexOf method.

procedure AddDirList(const Filemask: KOLString; Attrs: DWORD);

Can be used only with listbox and combobox - to add directory list items, filtered by given

Filemask (can contain wildcards) and Attrs. Following flags can be combined in Attrs: If the listbox

is sorted, directory items will be sorted (alpabetically).

function SetButtonIcon(aIcon: HIcon): PControl;

Sets up button icon image and changes its styles. Returns button itself.

function SetButtonBitmap(aBmp: HBitmap): PControl;

Sets up button icon image and changes its styles. Returns button itself.

function AllBtnReturnClick: PControl;

Call this method for a form or control to provide clicking a focused button when ENTER pressed.

By default, a button can be clicked only by SPACE key from the keyboard, or by mouse.

procedure Show;

Makes control visible and activates it.

function ShowModal: Integer;

Can be used only with a forms to show it modal. See also global function ShowMsgModal.

To use a form as a modal, it is possible to make it either auto-created or dynamically created.

For a first case, You (may be prefer to hide a form after showing it as a modal:

 procedure TForm1.Button1Click(Sender: PObj);
 begin
 Form2.Form.ShowModal;
 Form2.Form.Hide;
 end;

Another way is to create modal form just before showing it (this economies system resources):

 procedure TForm1.Button1Click(Sender: PObj);
 begin
 NewForm2(Form2, Applet);
 Form2.Form.ShowModal;
 Form2.Form.Free;
 // Never call Form2.Free or Form2.Form.Close
 // but always Form2.Form.Free; (!)
 end;

219 251

253

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

In samples above, You certainly can place any wished code before and after calling ShowModal

method.

Do not forget that if You have more than a single form in your project, separate Applet object

should be used.

See also ShowModalEx .

function ShowModalParented(const AParent: PControl): Integer;

by Alexander Pravdin. The same as ShowModal , but with a certain form as a parent.

function ShowModalEx: Integer;

The same as ShowModal , but all the windows of current thread are disabled while showing

form modal. This is useful if KOL form from a DLL is used modally in non-KOL application.

procedure Hide;

Makes control hidden.

function CallDefWndProc(var Msg: TMsg): Integer;

Function to be called in WndProc method to redirect message handling to default window

procedure.

function DoSetFocus: Boolean;

Sets focus for Enabled window. Returns True, if success.

procedure MinimizeNormalAnimated;

Apply this method to a main form (not to another form or Applet, even when separate Applet

control is not used and main form matches it!). This provides normal animated visual

minimization for the application. It therefore has no effect, if animation during minimize/resore

is turned off by user.

Applying this method also provides for the main form (only for it) correct restoring the form

maximized if it was maximized while minimizing the application. See also

RestoreNormalMaximized method.

procedure RestoreNormalMaximized;

Apply to any form for which it is important to restore it maximized when the application was

minimizing while such form was maximized. If the method MinimizeNormalAnimated was

called for the main form, then the correct behaviour is already provided for the main form, so in

such case it is no more necessary to call also this method, but calling it therefore is not an error.

function IsMainWindow: Boolean;

Returns True, if a window is the main in application (created first after the Applet, or matches the

Applet).

253

252

252

254

212

253

253

254

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

function ProcessMessage: Boolean;

Processes one message. See also ProcessMessages .

procedure ProcessMessages;

Processes pending messages during long cycle of calculation, allowing to window to be

repainted if needed and to respond to other messages. But if there are no such messages, your

application can be stopped until such one appear in messages queue. To prevent such situation,

use method ProcessPendingMessages instead.

procedure ProcessMessagesEx;

Version of ProcessMessages , which works always correctly, even if the application is

minimized or background.

procedure ProcessPendingMessages;

Similar to ProcessMessages , but without waiting of message in messages queue. I.e., if there

are no pending messages, this method immediately returns control to your code. This method is

better to call during long cycle of calculation (then ProcessMessages).

procedure ProcessPaintMessages;

function WndProc(var Msg: TMsg): Integer; virtual;

Responds to all Windows messages, posted (sended) to the window, before all other

proceeding. You can override it in derived controls, but in KOL there are several other ways to

control message flow of existing controls without deriving another costom controls for only such

purposes. See OnMessage , AttachProc .

function SetBorder(Value: Integer): PControl;

Assigns new Border value, and returns @ Self.

function BringToFront: PControl;

Changes z-order of the control, bringing it to the topmost level.

function SendToBack: PControl;

Changes z-order of the control, sending it to the back of siblings.

function DblBufTopParent: PControl;

Returns the topmost DoubleBuffered Parent control.

function MouseTransparent: PControl;

254

254

254

254

254

270 265

222

224 212

255

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

Call this method to set up mouse transparent control (which always returns HTTRANSPARENT in

responce to WM_NCHITTEST). This function returns a pointer to a control itself.

procedure GotoControl(Key: DWORD);

Emulates tabulation key press w/o sending message to current control. Can be applied to a form

or to any its control. If VK_TAB is used, state of shift kay is checked in: if it is pressed, tabulate is

in backward direction.

procedure DragStart;

Call this method for a form or control to drag it with left mouse button, when mouse left button

is already down. Dragging is stopped when left mouse button is released. See also

DragStartEx , DragStopEx .

procedure DragStartEx;

Call this method to start dragging the form by mouse. To stop dragging, call DragStopEx

method. (Tip: to detect mouse up event, use OnMouseUp event of the dragging control).

This method can be used to move any control with the mouse, not only entire form. State of

mouse button is not significant. Determine dragging state of the control checking its

Dragging property.

procedure DragStopEx;

Call this method to stop dragging the form (started by DragStopEx).

procedure DragItem(OnDrag: TOnDrag);

Starts dragging something with mouse. During the process, callback function OnDrag is called,

which allows to control drop target, change cursor shape, etc.

function LikeSpeedButton: PControl;

Transparent method (returns control itself). Makes button not focusable.

function Add(const S: KOLString): Integer;

Only for listbox and combobox.

function Insert(Idx: Integer; const S: KOLString): Integer;

Only for listbox and combobox.

procedure Delete(Idx: Integer);

Deletes given (by index) pointer item from the list, shifting all follow item indexes up by one.

procedure Clear;

Clears object content. Has different sense for different controls. E.g., for label, editbox, button

and other simple controls it assigns empty string to Caption property. For listbox, combobox,

226

255 255

255

273

226

224

219

256

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

listview it deletes all items. For toolbar, it deletes all buttons. Et so on.

procedure RemoveStatus;

Call it to remove status bar from a form (created in result of assigning value(s) to StatusText [],

SimpleStatusText properties). When status bar is removed, form is resized to preset client

height.

function StatusPanelCount: Integer;

Returns number of status panels defined in status bar.

function SetUnicode(Unicode: Boolean): PControl;

Sets control as Unicode or not. The control itself is returned as for other "transparent" functions.

A conditional define UNICODE_CTRLS must be added to a project to provide handling unicode

messages.

function TC_Insert(Idx: Integer; const TabText: KOLString; TabImgIdx: Integer):
PControl;

Inserts new tab before given, returns correspondent page control (which can be used as a

parent for controls to place on the page).

procedure TC_Delete(Idx: Integer);

Removes tab from tab control, destroying all its child controls.

procedure TC_InsertControl(Idx: Integer; const TabText: KOLString; TabImgIdx:
Integer; Page: PControl);

Inserts new tab before given, but not construt this Page (this control must be created before

inserting, and may be not a Panel).

function TC_Remove(Idx: Integer): PControl;

Only removes tab from tab control, and return this Page as Result.

procedure TC_SetPadding(cx, cy: Integer);

Sets space padding around tab text in a tab of tab control.

function TC_TabAtPos(x, y: Integer): Integer;

Returns index of tab, found at the given position (relative to a client rectangle of tab control). If

no tabs found at the position, -1 is returned.

function TC_DisplayRect: TRect;

Returns rectangle, occupied by a page rather then tab.

227

227

257

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

function TC_IndexOf(const S: KOLString): Integer;

By Mr Brdo. Index of page by its Caption .

function TC_SearchFor(const S: KOLString; StartAfter: Integer; Partial: Boolean):
Integer;

By Mr Brdo. Index of page by its Caption .

procedure LVColAdd(const aText: KOLString; aalign: TTextAlign ; aWidth: Integer);

Adds new column. Pass 'width' <= 0 to provide default column width. 'text' is a column header

text.

procedure LVColInsert(ColIdx: Integer; const aText: KOLString; aAlign: TTextAlign
; aWidth: Integer);

Inserts new column at the Idx position (1-based column index).

procedure LVColDelete(ColIdx: Integer);

Deletes column from List View

function LVNextItem(IdxPrev: Integer; Attrs: DWORD): Integer;

Returns an index of the next after IdxPrev item with given attributes in the list view. Attributes

can be: LVNI_ALL - Searches for a subsequent item by index, the default value.

Searchs by physical relationship to the index of the item where the search is to begin.

LVNI_ABOVE - Searches for an item that is above the specified item. LVNI_BELOW - Searches for

an item that is below the specified item. LVNI_TOLEFT - Searches for an item to the left of the

specified item. LVNI_TORIGHT - Searches for an item to the right of the specified item.

The state of the item to find can be specified with one or a combination of the following values:

LVNI_CUT - The item has the LVIS_CUT state flag set. LVNI_DROPHILITED - The item has the

LVIS_DROPHILITED state flag set LVNI_FOCUSED - The item has the LVIS_FOCUSED state flag

set. LVNI_SELECTED - The item has the LVIS_SELECTED state flag set.

function LVNextSelected(IdxPrev: Integer): Integer;

Returns an index of next (after IdxPrev) selected item in a list view.

function LVAdd(const aText: KOLString; ImgIdx: Integer; State: TListViewItemState;
StateImgIdx, OverlayImgIdx: Integer; Data: DWORD): Integer;

Adds new line to the end of ListView control. Only content of item itself is set (aText, ImgIdx). To

change other column text and attributes of item added, use appropriate properties / methods ().

Returns an index of added item.

There is no Unicode version defined, use LVItemAddW instead.

219

219

206

206

258

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

function LVItemAdd(const aText: KOLString): Integer;

Adds an item to the end of list view. Returns an index of the item added.

function LVInsert(Idx: Integer; const aText: KOLString; ImgIdx: Integer; State:
TListViewItemState; StateImgIdx, OverlayImgIdx: Integer; Data: DWORD): Integer;

Inserts new line before line with index Idx in ListView control. Only content of item itself is set

(aText, ImgIdx). To change other column text and attributes of item added, use appropriate

properties / methods (). if ImgIdx = I_IMAGECALLBACK, event handler OnGetLVItemImgIdx is

responsible for returning image index for an item (/// not implemented yet ///) Pass

StateImgIdx and OverlayImgIdx = 0 (ignored in that case) or 1..15 to use correspondent icon

from ImageListState image list.

Returns an index of item inserted.

There is no unicode version of this method, use LVItemInsertW.

function LVItemInsert(Idx: Integer; const aText: KOLString): Integer;

Inserts an item to Idx position.

procedure LVDelete(Idx: Integer);

Deletes item of ListView with subitems (full row - in lvsDetail view style.

procedure LVSetItem(Idx, Col: Integer; const aText: KOLString; ImgIdx: Integer;
State: TListViewItemState; StateImgIdx, OverlayImgIdx: Integer; Data: DWORD);

Use this method to set item data and item columns data for ListView control. It is possible to

pass I_SKIP as ImgIdx, StateImgIdx, OverlayImgIdx values to skip setting this fields. But all other

are set always. Like in LVInsert / LVAdd , ImgIdx can be I_IMAGECALLBACK to determine

that image will be retrieved in OnGetItemImgIdx event handler when needed.

If this method is called to set data for column > 0, parameters ImgIdx and Data are ignored

anyway.

There is no unicode version of this method, use other methods to set up listed properties

separately using correspondent W-functions.

procedure LVSelectAll;

Call this method to select all the items of the list view control.

function LVItemRect(Idx: Integer; Part: TGetLVItemPart): TRect;

Returns rectangle occupied by given item part(s) in ListView window. Empty rectangle is

returned, if the item is not viewing currently.

function LVSubItemRect(Idx, ColIdx: Integer): TRect;

Returns rectangle occupied by given item's subitem in ListView window, in lvsDetail or

lvsDetailNoHeader style. Empty rectangle (0,0,0,0) is returned if the item is not viewing currently.

Left or/and right bounds of the rectangle returned can be outbound item rectangle if only a

229

258 257

212

259

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

part of the subitem is visible or the subitem is not visible in the item, which is visible itself.

function LVItemAtPos(X, Y: Integer): Integer;

Return index of item at the given position.

function LVItemAtPosEx(X, Y: Integer; var Where: TWherePosLVItem): Integer;

Retrieves index of item and sets in Where, what part of item is under given coordinates. If there

are no items at the specified position, -1 is returned.

procedure LVMakeVisible(Item: Integer; PartiallyOK: Boolean);

Makes listview item visible. Ignored when Item passed < 0.

procedure LVEditItemLabel(Idx: Integer);

Begins in-place editing of item label (first column text).

procedure LVSort;

Initiates sorting of list view items. This sorting procedure is available only for Win2K, WinNT4

with IE5, Win98 or Win95 with IE5. See also LVSortData .

procedure LVSortData;

Initiates sorting of list view items. This sorting procedure is always available in Windows95/98,

NT/2000. But OnCompareLVItems procedure receives not indexes of items compared but its

Data field associated instead.

procedure LVSortColumn(Idx: Integer);

This is a method to simplify sort by column. Just call it in your OnColumnClick event passing

column index and enjoy with your list view sorted automatically when column header is clicked.

Requieres Windows2000 or Winows98, not supported under WinNT 4.0 and below and under

Windows95.

Either lvoSortAscending or lvoSortDescending option must be set in LVOptions , otherwise no

sorting is performed.

function LVIndexOf(const S: KOLString): Integer;

Returns first list view item index with caption matching S. The same as LVSearchFor (S, -1,

FALSE).

function LVSearchFor(const S: KOLString; StartAfter: Integer; Partial: Boolean):
Integer;

Searches an item with Caption equal to S (or starting from S, if Partial = TRUE). Searching is

started after an item specified by StartAfter parameter.

207

259

274

274

229

259

219

260

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

function TVInsert(nParent, nAfter: THandle; const Txt: KOLString): THandle;

Inserts item to a tree view. If nParent is 0 or TVI_ROOT, the item is inserted at the root of tree

view. It is possible to pass following special values as nAfter parameter:

TVI_FIRST Inserts the item at the beginning of the list.

TVI_LAST Inserts the item at the end of the list.

TVI_SORT Inserts the item into the list in alphabetical order.

procedure TVDelete(Item: THandle);

Removes an item from the tree view. If value TVI_ROOT is passed, all items are removed.

function TVItemPath(Item: THandle; Delimiter: KOLChar): KOLString;

Returns full path from the root item to given item. Path is calculated as a concatenation of all

parent nodes text strings, separated by given delimiter character.

Please note, that returned path has no trailing delimiter, this character is only separating

different parts of the path.

If Item is not specified (=0), path is returned for Selected item.

function TVItemAtPos(x, y: Integer; var Where: DWORD): THandle;

Returns handle of item found at specified position (relative to upper left corener of client area of

the tree view). If no item found, 0 is returned. Variable Where receives additional flags

combination, describing more detailed, on which part of item or tree view given point is located,

such as:

TVHT_ABOVE Above the client area

TVHT_BELOW Below the client area

TVHT_NOWHERE In the client area, but below the last item

TVHT_ONITEM On the bitmap or label associated with an item

TVHT_ONITEMBUTTON On the button associated with an item

TVHT_ONITEMICON On the bitmap associated with an item

TVHT_ONITEMINDENT In the indentation associated with an item

TVHT_ONITEMLABEL On the label (string) associated with an item

TVHT_ONITEMRIGHT In the area to the right of an item

TVHT_ONITEMSTATEICON On the state icon for a tree-view item that is in a user-defined state

TVHT_TOLEFT To the right of the client area

TVHT_TORIGHT To the left of the client area

procedure TVExpand(Item: THandle; Flags: DWORD);

Call it to expand/collapse item's child nodes. Possible values for Flags parameter are:

TVE_COLLAPSE Collapses the list. TVE_COLLAPSERESET Collapses the list and removes the child

items. Note that TVE_COLLAPSE must also be specified. TVE_EXPAND Expands the list.

TVE_TOGGLE Collapses the list if it is currently expanded or expands it if it is currently collapsed.

261

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

procedure TVSort(N: THandle);

By Alex Mokrov. Sorts treeview. If N = 0, entire treeview is sorted. Otherwise, children of the

given node only.

procedure TVEditItem(Item: THandle);

Begins editing given item label in tree view.

procedure TVStopEdit(Cancel: Boolean);

Ends editing item label, started by user or explicitly by TVEditItem method.

procedure TBAddBitmap(Bitmap: HBitmap);

Adds bitmaps to a toolbar. You can pass special values as Bitmap to add one of predefined

system button images bitmaps:

THandle(-1) to add standard small icons,

THandle(-2) to add standard large icons,

THandle(-5) to add standard small view icons,

THandle(-6) to add standard large view icons,

THandle(-9) to add standard small history icons,

THandle(-10) to add standard large history icons, (in that case use following values as indexes to

the standard and view bitmaps:

STD_COPY, STD_CUT, STD_DELETE, STD_FILENEW, STD_FILEOPEN, STD_FILESAVE, STD_FIND,

STD_HELP, STD_PASTE, STD_PRINT, STD_PRINTPRE, STD_PROPERTIES, STD_REDO, STD_REPLACE,

STD_UNDO,

VIEW_LARGEICONS, VIEW_SMALLICONS, VIEW_LIST, VIEW_DETAILS, VIEW_SORTNAME,

VIEW_SORTSIZE, VIEW_SORTDATE, VIEW_SORTTYPE (use it as parameters BtnImgIdxArray in

TBAddButtons or TBInsertButtons methods, and in assigning value to TBButtonImage []

property). Added bitmaps have indeces starting from previous count of images (as these are

appended to existing - if any).

Note, that if You add your own (custom) bitmap, it is not transparent. Do not assume that clSilver

is always equal to clBtnFace. Use API function CreateMappedBitmap to load bitmap from

resource and map desired colors as you wish (e.g., convert clTeal to clBtnFace). Or, call defined

in KOL function LoadMappedBitmap to do the same more easy. Unfortunately, resource

identifier for bitmap to pass it to LoadMappedBitmap or to CreateMappedBitmap seems must

be integer, so it is necessary to create rc-file manually and compile using Borland Resource

Compiler to figure it out.

function TBAddButtons(const Buttons: array of PKOLChar; const BtnImgIdxArray: array
of Integer): Integer;

Adds buttons to toolbar. Last string in Buttons array *must* be empty ('' or nil), so to add buttons

without text, pass ' ' string (one space char). It is not necessary to provide image indexes for all

buttons (it is sufficient to assign index for first button only). But in place, correspondent to

separator button (defined by string '-'), any integer must be passed to assign follow image

261

261 262 235

262

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

indexes correctly. See example. To add check buttons, use prefix '+' or '-' in button definition

string. If next character is '!', such buttons are grouped to a radio-group. Also, it is possible to

use '^' prefix (must be first) to define button with small drop-down section (use also

OnTBDropDown event to respond to clicking drop down section of such buttons).

This function returns command id for first added button (other id's can be calculated

incrementing the result by one for each button, except separators, which have no command id).

Note: for static toolbar (single in application and created once) ids are started from value 100.

function TBInsertButtons(BeforeIdx: Integer; Buttons: array of PKOLChar; const
BtnImgIdxArray: array of Integer): Integer;

Inserts buttons before button with given index on toolbar. Returns command identifier for first

button inserted (other can be calculated incrementing returned value needed times. See also

TBAddButtons .

procedure TBDeleteButton(BtnID: Integer);

Deletes single button given by its command id. To delete separator, use TBDeleteBtnByIdx

instead.

procedure TBDeleteBtnByIdx(Idx: Integer);

Deletes single button given by its index in toolbar (not by command ID).

procedure TBClear;

Deletes all buttons. Dufa

procedure TBAssignEvents(BtnID: Integer; Events: array of TOnToolbarButtonClick);

Allows to assign separate OnClick events for every toolbar button. BtnID should be toolbar

button ID or index of the first button to assign event. If it is an ID, events are assigned to buttons

in creation order. Otherwise, events are assigned in placement order. Anyway, separator buttons

are not skipped, so pass at least nil for such button as an event.

Please note, that though not all buttons should exist before assigning events to it, therefore at

least the first button (specified by BtnID) must be already added before calling TBAssignEvents.

procedure TBResetImgIdx(BtnID, BtnCount: Integer);

Resets image index for BtnCount buttons starting from BtnID.

function TBItem2Index(BtnID: Integer): Integer;

Converts button command id to button index for tool bar.

function TBIndex2Item(Idx: Integer): Integer;

Converts toolbar button index to its command ID..

276

261

262

271

263

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

procedure TBConvertIdxArray2ID(const IdxVars: array of PDWORD);

Converts toolbar button indexes to its command IDs for an array of indexes (each item in the

array passed is a pointer to Integer, containing button index when the procedure is callled, then

all these indexes are relaced with a correspondent button ID).

function TBButtonSeparator(BtnID: Integer): Boolean;

Returns TRUE, if a toolbar button is separator.

function TBButtonAtPos(X, Y: Integer): Integer;

Returns command ID of button at the given position on toolbar, or -1, if there are no button at

the position. Value 0 is returned for separators.

function TBBtnIdxAtPos(X, Y: Integer): Integer;

Returns index of button at the given position on toolbar. This also can be index of separator

button. -1 is returned if there are no buttons found at the position.

function TBBtnEvent(Idx: Integer): TOnToolbarButtonClick;

Returns toolbar event handler assigned to a toolbar button (by its index).

function TBMoveBtn(FromIdx, ToIdx: Integer): Boolean;

By TR"]F. Moves button from one position to another.

procedure TBSetTooltips(BtnID1st: Integer; const Tooltips: array of PKOLChar);

Allows to assign tooltips to several buttons. Until this procedure is not called, tooltips list is not

created and no code is added to executable. This method of tooltips maintainance for toolbar

buttons is useful both for static and dynamic toolbars (meaning "dynamic" - toolbars with

buttons, deleted and inserted at run-time).

function TBBtnTooltip(BtnID: Integer): KOLString;

Returns tooltip assigned to a toolbar button.

function PlaceRight: PControl;

Places control right (to previously created on the same parent).

function PlaceDown: PControl;

Places control below (to previously created on the same parent). Left position is not changed

(thus is, kept equal to Parent.Margin).

function PlaceUnder: PControl;

Places control below (to previously created one, aligning its Left position to Left position

of previous control).

212

212 212

264

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

function SetSize(W, H: Integer): PControl;

Changes size of a control. If W or H less or equal to 0, correspondent size is not changed.

function Size(W, H: Integer): PControl;

Like SetSize , but provides automatic resizing of parent control (recursively). Especially useful

for aligned controls.

function SetClientSize(W, H: Integer): PControl;

Like SetSize , but works setting W = ClientWidth , H = ClientHeight . Use this method for

forms, which can not be resized (dialogs).

function MakeWordWrap: PControl;

Determines if to autosize control (like label, button, etc.)

function IsAutoSize: Boolean;

TRUE, if a control is autosizing.

function AlignLeft(P: PControl): PControl;

assigns Left := P.Left

function AlignTop(P: PControl): PControl;

assigns Top := P.Top

function ResizeParent: PControl;

Resizes parent, calling ResizeParentRight and ResizeParentBottom .

function ResizeParentRight: PControl;

Resizes parent right edge (Margin of parent is added to right coordinate of a control). If

called second time (for the same parent), resizes only for increasing of right edge of parent.

function ResizeParentBottom: PControl;

Resizes parent bottom edge (Margin of parent is added to bottom coordinate of a control).

function CenterOnParent: PControl;

Centers control on parent, or if applied to a form, centers form on screen.

function CenterOnForm(Form1: PControl): PControl;

Centers form on another form. If Form1 not present, centers on screen.

function CenterOnCurrentScreen: PControl;

Centers on a display where a mouse is located now. For forms only.

function Shift(dX, dY: Integer): PControl;

264

264 213 213

212

212

264 264

222

222

265

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

Moves control respectively to current position (Left := Left + dX, Top := Top + dY).

function SetPosition(X, Y: Integer): PControl;

Moves control directly to the specified position.

function Tabulate: PControl;

Call it once for form/applet to provide tabulation between controls on form/on all forms using

TAB / SHIFT+TAB and arrow keys.

function TabulateEx: PControl;

Call it once for form/applet to provide tabulation between controls on form/on all forms using

TAB / SHIFT+TAB and arrow keys. Arrow keys are used more smart, allowing go to nearest

control in certain direction.

function SetAlign(AAlign: TControlAlign): PControl;

Assigns passed value to property Align , aligning control on parent, and returns @Self (so it is

"transparent" function, which can be used to adjust control at the creation, e.g.:
MyLabel := NewLabel(MyForm, 'Label1').SetAlign(caBottom);

function SetChecked(const Value: Boolean): PControl;

Use it to check/uncheck check box control or push button. Do not apply it to check radio buttons

- use SetRadioChecked method below.

function SetRadioChecked: PControl;

Use it to check radio button item correctly (unchecking all alternative ones). Actually, method

Click is called, and control itself is returned.

procedure Click;

Emulates click on control programmatically, sending WM_COMMAND message with

BN_CLICKED code. This method is sensible only for buttons, checkboxes and radioboxes.

function Perform(msgcode: DWORD; wParam, lParam: Integer): Integer; stdcall;

Sends message to control's window (created if needed).

function Postmsg(msgcode: DWORD; wParam, lParam: Integer): Boolean; stdcall;

Sends message to control's window (created if needed).

procedure AttachProc(Proc: TWindowFunc);

It is possible to attach dynamically any message handler to window procedure using this

method. Last attached procedure is called first. If procedure returns True, further processing of a

message is stopped. Attached procedure can be detached using DetachProc (but do not

attach/detach procedures during handling of attached procedure - this can hang application).

212 212 212 212

245

265

265

266

266

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

procedure AttachProcEx(Proc: TWindowFunc; ExecuteAfterAppletTerminated: Boolean);

The same as AttachProc , but a handler is executed even after terminating the main message

loop processing (i.e. after assigning true to AppletTerminated global variable.

function IsProcAttached(Proc: TWindowFunc): Boolean;

Returns True, if given procedure is already in chain of attached ones for given control window

proc.

procedure DetachProc(Proc: TWindowFunc);

Detaches procedure attached earlier using AttachProc .

procedure SetAutoPopupMenu(PopupMenu: PObj);

To assign a popup menu to the control, call SetAutoPopupMenu method of the control with

popup menu object as a parameter.

function SupportMnemonics: PControl;

This method provides supporting mnemonic keys in menus, buttons, checkboxes, toolbar

buttons.

function LBItemAtPos(X, Y: Integer): Integer;

Return index of item at the given position.

function RE_TextSizePrecise: Integer;

By Savva. Returns length of rich edit text.

function RE_FmtStandard: PControl;

"Transparent" method (returns @Self as a result), which (when called) provides "standard"

keyboard interface for formatting Rich text (just call this method, for example:
RichEd1 := NewRichEdit(Panel1, []).SetAlign(caClient).RE_FmtStandard;

Following keys will be maintained additionally:

· CTRL+I switch "Italic"

· CTRL+B switch "Bold"

· CTRL+U switch "Underline"

· CTRL+SHIFT+U switch underline type and turn underline on (note, that some of

underline styles can not be shown properly in RichEdit v2.0 and

lower, though RichEdit2.0 stores data successfully).

· CTRL+O switch "StrikeOut"

· CTRL+'gray+' increase font size

· CTRL+'gray-' decrease font size

265

265

92

267

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

· CTRL+SHIFT+'gray+' superscript

· CTRL+SHIFT+'gray-' subscript

· CTRL+SHIFT+Z ReDo

And, though following standard formatting keys are provided by RichEdit control itself in

Windows2000, some of these are not functioning automatically in earlier Windows versions,

even for RichEdit2.0. So, functionality of some of these (marked with (*)) are added here too:

· CTRL+L align paragraph left

· CTRL+R align paragraph right

· CTRL+E align paragraph center

· CTRL+A select all, double-click on word - select word

· CTRL+Right to next word

· CTRL+Left to previous word

· CTRL+Home to the beginning of text

· CTRL+End to the end of text

· CTRL+Z UnDo

If You originally assign some (plain) text to Text property, switching "underline" can also

change other font attributes, e.g., "bold" - if fsBold style is in default Font . To prevent such

behavior, select entire text first (see SelectAll) and make assignment to RE_Font property,

e.g.:
RichEd1.SelectAll;
RichEd1.RE_Font := RichEd1.RE_Font;
RichEd1.SelLength := 0;

And, some other notices about formatting. Please remember, that only True Type fonts can be

succefully scaled and transformed to get desired effects (e.g., bold). By default, RichEdit uses

System font face name, which can even have problems with fsBold style. Please remember also,

that assigning RE_Font to RE_Font just initializying formatting attributes, making all those

valid in entire text, but does not change font attributes. To use True Type font, directly assign

face name You wish, e.g.:
RichEd1.SelectAll;
RichEd1.RE_Font := RichEd1.RE_Font;
RichEd1.RE_Font.FontName := 'Arial';
RichEd1.SelLength := 0;

procedure RE_CancelFmtStandard;

Cancels RE_FmtStandard (detaching window procedure handler).

function RE_LoadFromStream(Stream: PStream; Length: Integer; Format: TRETextFormat;
SelectionOnly: Boolean): Boolean;

Use this method rather then assignment to RE_Text property, if source is stored in file or

stream (to minimize resources during loading of RichEdit content). Data is loading starting from

current position in stream and no more then Length bytes are loaded (use -1 value to load to

the end of stream). Loaded data replaces entire content of RichEdit control, or selection only,

212

219

221

250 238

238 238

266

244

268

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

depending on SelectionOnly flag.

If You want to provide progress (e.g. in form of progress bar), assign OnProgress event to

your handler - and to examine current position of loading, read TSream.Position property of

soiurce stream).

function RE_SaveToStream(Stream: PStream; Format: TRETextFormat; SelectionOnly:
Boolean): Boolean;

Use this method rather then RE_TextProperty to store data to file or stream (to minimize

resources during saving of RichEdit content). Data is saving starting from current position in a

stream (until end of RichEdit data). If SelectionOnly flag is True, only selected part of RichEdit

text is saved.

Like for RE_LoadFromStream , it is possible to assign your method to OnProgress event

(but to calculate progress of save-to-stream operation, compare current stream position with

RE_Size[rsBytes] property value).

function RE_LoadFromFile(const Filename: KOLString; Format: TRETextFormat;
SelectionOnly: Boolean): Boolean;

Use this method rather then other assignments to RE_Text property, if a source for RichEdit is

the file. See also RE_LoadFromStream .

function RE_SaveToFile(const Filename: KOLString; Format: TRETextFormat;
SelectionOnly: Boolean): Boolean;

Use this method rather then other similar, if You want to store entire content of RichEdit or

selection only of RichEdit to a file.

procedure RE_Append(const S: KOLString; ACanUndo: Boolean);

procedure RE_InsertRTF(const S: KOLString);

procedure RE_HideSelection(aHide: Boolean);

Allows to hide / show selection in RichEdit.

function RE_SearchText(const Value: KOLString; MatchCase, WholeWord, ScanForward:
Boolean; SearchFrom, SearchTo: Integer): Integer;

Searches given string starting from SearchFrom position up to SearchTo position (to the end of

text, if SearchTo is -1). Returns zero-based character position of the next match, or -1 if there

are no more matches. To search in bacward direction, set ScanForward to False, and pass

SearchFrom > SearchTo (or even SearchFrom = -1 and SearchTo = 0).

function RE_WSearchText(const Value: KOLWideString; MatchCase, WholeWord,
ScanForward: Boolean; SearchFrom, SearchTo: Integer): Integer;

Searches given string starting from SearchFrom position up to SearchTo position (to the end of

text, if SearchTo is -1). Returns zero-based character position of the next match, or -1 if there

277

267 277

244

267

269

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

are no more matches. To search in bacward direction, set ScanForward to False, and pass

SearchFrom > SearchTo (or even SearchFrom = -1 and SearchTo = 0).

function RE_NoOLEDragDrop: PControl;

Just prevents drop OLE objects to the rich edit control. Seems not working for some cases.

function CanUndo: Boolean;

Returns True, if the edit (or RichEdit) control can correctly process the EM_UNDO message.

procedure EmptyUndoBuffer;

Reset the undo flag of an edit control, preventing undoing all previous changes.

function Undo: Boolean;

For a single-line edit control, the return value is always TRUE. For a multiline edit control and

RichEdit control, the return value is TRUE if the undo operation is successful, or FALSE if the undo

operation fails.

procedure FreeCharFormatRec;

Only for RichEdit control: Returns True if successful.

TControl events

property OnHelp: TOnHelp;

An event of a form, it is called when F1 pressed or help topic requested by any other way. To

prevent showing help, nullify Sender. Set Popup to TRUE to provide showing help in a pop-up

window. It is also possible to change Context dynamically.

property OnDropDown: TOnEvent;

Is called when combobox is dropped down (or drop-down button of toolbar is pressed - see

also OnTBDropDown).

property OnCloseUp: TOnEvent;

Is called when combobox is closed up. When drop down list is closed because user pressed

"Escape" key, previous selection is restored. To test if it is so, call GetKeyState(VK_ESCAPE) and

check, if negative value is returned (i.e. Escape key is pressed when event handler is calling).

property OnBitBtnDraw: TOnBitBtnDraw;

Special event for BitBtn. Using it, it is possible to provide additional effects, such as highlighting

button text (by changing its Font and other properties). If the handler returns True, it is

supposed that it made all drawing and there are no further drawing occur.

276

221

270

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

property OnMeasureItem: TOnMeasureItem;

This event is called for owner-drawn controls, such as list box, combo box, list view with

appropriate owner-drawn style. For fixed item height controls (list box with loOwnerDrawFixed

style, combobox with coOwnerDrawFixed and list view with lvoOwnerDrawFixed option) this

event is called once. For list box with loOwnerDrawVariable style and for combobox with

coOwnerDrawVariable style this event is called for every item.

property OnShow: TOnEvent;

Is called when a control or form is to be shown. This event is not fired for a form, if its

WindowState initially is set to wsMaximized or wsMinimized. This behaviour is by design (the

window does not receive WM_SHOW message in such case).

property OnHide: TOnEvent;

Is called when a control or form becomes hidden.

property OnMessage: TOnMessage;

Is called for every message processed by TControl object. And for Applet window, this event is

called also for all messages, handled by all its child windows (forms).

property OnClose: TOnEventAccept;

Called before closing the window. It is possible to set Accept parameter to False to prevent

closing the window. This event events is not called when windows session is finishing (to handle

this event, handle WM_QUERYENDSESSION message, or assign OnQueryEndSession event to

another or the same event handler).

property OnQueryEndSession: TOnEventAccept;

Called when WM_QUERYENDSESSION message come in. It is possible to set Accept parameter

to False to prevent closing the window (in such case session ending is halted). It is possible to

check CloseQueryReason property to find out, why event occur.

To provide normal application close while handling OnQueryEndSession, call in your code

PostQuitMessage(0) or call method Close for the main form, this is enough to provide all

OnClose and OnDestroy handlers to be called.

property OnMinimize: TOnEvent;

Called when window is minimized.

property OnMaximize: TOnEvent;

Called when window is maximized.

property OnRestore: TOnEvent;

221

270

225

250

270

271

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

Called when window is restored from minimized or maximized state.

property OnPaint: TOnPaint;

Event to set to override standard control painting. Can be applied to any control (though

originally was designed only for paintbox control). When an event handler is called, it is possible

to use UpdateRgn to examine what parts of window require painting to improve

performance of the painting operation.

property OnPrePaint: TOnPaint;

Only for graphic controls. If you assign it, call Invalidate also.

property OnPostPaint: TOnPaint;

Only for graphic controls. If you assign it, call Invalidate also.

property OnEraseBkgnd: TOnPaint;

This event allows to override erasing window background in response to WM_ERASEBKGND

message. This allows to add some decorations to standard controls without overriding its

painting in total. Note: When erase background, remember, that property ClientRect can

return not true client rectangle of the window - use GetClientRect API function instead. For

example:

var BkBmp: HBitmap;
procedure TForm1.KOLForm1FormCreate(Sender: PObj);
begin
 Toolbar1.OnEraseBkgnd := DecorateToolbar;
 BkBmp := LoadBitmap(hInstance, 'BK1');
end;

procedure TForm1.DecorateToolbar(Sender: PControl; DC: HDC);
var CR: TRect;
begin
 GetClientRect(Sender.Handle, CR);
 Sender.Canvas.Brush.BrushBitmap := BkBmp;
 Sender.Canvas.FillRect(CR);
end;

property OnClick: TOnEvent;

Called on click at control. For buttons, checkboxes and radioboxes is called regadless if control

clicked by mouse or keyboard. For toolbar, the same event is used for all toolbar buttons and

toolbar itself. To determine which toolbar button is clicked, check CurIndex property. And

note, that all the buttons including separator buttons are enumerated starting from 0. Though

images are stored (and prepared) only for non-separator buttons. And to determine, if toolbar

button was clicked with right mouse button, check RightClick property.

This event does not work on a Form, still it is fired in responce to WM_COMMAND window

message mainly rather direct to mouse down. But, if you want to have OnClick event to be fired

on a Form, use (following) property OnFormClick to assign it.

225

248

248

248

219

225

271

272

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

property OnFormClick: TOnEvent;

Assign you OnClick event handler using this property, if you want it to be fired in result of

mouse click on a form surface. Use to assign the event only for forms (to avoid doublicated

firing the handler).

Note: for a form, in case of WM_xDOUBLECLK event, this event is fired for both clicks. So if you

install both OnFormClick and OnMouseDblClk , handlers will be called in the following

sequence for each double click: OnFormClick; OnMouseDblClk ; OnFormClick.

property OnEnter: TOnEvent;

Called when control receives focus.

property OnLeave: TOnEvent;

Called when control looses focus.

property OnChange: TOnEvent;

Called when edit control is changed, or selection in listbox or current index in combobox is

changed (but if OnSelChanged assigned, the last is called for change selection). To respond to

check/uncheck checkbox or radiobox events, use OnClick instead.

property OnSelChange: TOnEvent;

Called for rich edit control, listbox, combobox or treeview when current selection (range, or

current item) is changed. If not assigned, but OnChange is assigned, OnChange is called

instead.

property OnResize: TOnEvent;

Called whenever control receives message WM_SIZE (thus is, if control is resized.

property OnMove: TOnEvent;

Called whenever control receives message WM_MOVE (i.e. when control is moved over its

parent).

property OnMoving: TOnEventMoving;

Called whenever control receives message WM_MOVE (i.e. when control is moved over its

parent).

property OnSplit: TOnSplit;

Called when splitter control is dragging - to allow for your event handler to decide if to accept

new size of left (top) control, and new size of the rest area of parent.

property OnKeyDown: TOnKey;

Obvious.

271

273

273

271

272 272

273

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

property OnKeyUp: TOnKey;

Obvious.

property OnChar: TOnChar;

Deprecated event, use OnKeyChar .

property OnKeyChar: TOnChar;

Obviuos.

property OnKeyDeadChar: TOnChar;

Obviuos.

property OnMouseUp: TOnMouse;

Obvious.

property OnMouseDown: TOnMouse;

Obvious.

property OnMouseMove: TOnMouse;

Obvious.

.

property OnMouseDblClk: TOnMouse;

Obvious.

property OnMouseWheel: TOnMouse;

Mouse wheel (up or down) event. In Windows, only focused controls and controls having

scrollbars (or a scrollbar iteself) receive such message. To get direction and amount of wheel,

use typecast: SmallInt(HiWord(Mouse.Shift)). Value 120 corresponds to one wheel step (-120

- for step back).

property OnMouseEnter: TOnEvent;

Is called when mouse is entered into control. See also OnMouseLeave .

property OnMouseLeave: TOnEvent;

Is called when mouse is leaved control. If this event is assigned, then mouse is captured on

mouse enter event to handle all other mouse events until mouse cursor leaves the control.

property OnTestMouseOver: TOnTestMouseOver ;

Special event, which allows to extend OnMouseEnter / OnMouseLeave (and also Flat

property for BitBtn control). If a handler is assigned to this event, actual testing whether mouse

273

273

209

273 273 226

274

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

is in control or not, is occuring in the handler. So, it is possible to simulate more careful hot

tracking for controls with non-rectangular shape (such as glyphed BitBtn control).

property OnEndEditLVItem: TOnEditLVItem;

Called when edit of an item label in ListView control finished. Return True to accept new label

text, or false - to not accept it (item label will not be changed). If handler not set to an event, all

changes are accepted.

property OnLVDelete: TOnDeleteLVItem;

This event is called when an item is deleted in the listview. Do not add, delete, or rearrange

items in the list view while processing this notification.

property OnDeleteLVItem: TOnDeleteLVItem;

Called for every deleted list view item.

property OnDeleteAllLVItems: TOnEvent;

Called when all the items of the list view control are to be deleted. If after returning from this

event handler event OnDeleteLVItem is yet assigned, an event OnDeleteLVItem will be

called for every deleted item.

property OnLVData: TOnLVData;

Called to provide virtual list view with actual data. To use list view as virtaul list view, define also

lvsOwnerData style and set Count property to actual row count of the list view. This manner

of working with list view control can greatly improve performance of an application when

working with huge data sets represented in listview control.

property OnCompareLVItems: TOnCompareLVItems;

Event to compare two list view items during sort operation (initiated by LVSort method call).

Do not send any messages to the list view control while it is sorting - results can be

unpredictable!

property OnColumnClick: TOnLVColumnClick;

This event handler is called when column of the list view control is clicked. You can use this event

to initiate sorting of list view items by this column.

property OnLVStateChange: TOnLVStateChange;

This event occure when an item or items range in list view control are changing its state (e.g.

selected or unselected).

property OnDrawItem: TOnDrawItem;

This event can be used to implement custom drawing for list view, list box, dropped list of a

274 274

219

259

275

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

combobox. For a list view, custom drawing using this event is possible only in lvsDetail and

lvsDetailNoHeader styles, and OnDrawItem is called to draw entire row at once only. See also

OnLVCustomDraw event.

property OnLVCustomDraw: TOnLVCustomDraw;

Custom draw event for listview. For every item to be drawn, this event can be called several

times during a single drawing cycle - depending on a result, returned by an event handler. Stage

can have one of following values:

CDDS_PREERASE

CDDS_POSTERASE

CDDS_ITEMPREERASE

CDDS_PREPAINT

CDDS_ITEMPREPAINT

CDDS_ITEM

CDDS_SUBITEM + CDDS_ITEMPREPAINT

CDDS_SUBITEM + CDDS_ITEMPOSTPAINT

CDDS_ITEMPOSTPAINT

CDDS_POSTPAINT

When called, see on Stage to get know, on what stage the event is activated. And depend on the

stage and on what you want to paint, return a value as a result, which instructs the system, if to

use default drawing on this (and follows) stage(s) for the item, and if to notify further about

different stages of drawing the item during this drawing cycle. Possible values to return are:

CDRF_DODEFAULT perform default drawing. Do not notify further for this item

(subitem) (or for entire listview, if called with flag CDDS_ITEM

reset - ?)

CDRF_NOTIFYITEMDRAW return this value, when the event is called the first time in a

cycle of drawing, with ItemIdx = -1 and flag CDDS_ITEM

reset in Stage parameter

CDRF_NOTIFYPOSTERASE usually can be used to provide default erasing, if you want to

perform drawing immediately after that

CDRF_NOTIFYPOSTPAINT return this value to provide calling the event after

performing default drawing. Useful when you wish redraw

only a part of the (sub)item

CDRF_SKIPDEFAULT return this value to inform the system that all drawing is

done and system should not peform any more drawing for

the (sub)item during this drawing cycle.

CDRF_NEWFONT informs the system, that font is changed and default drawing

should be performed with changed font;

275

276

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

If you want to get notifications for each subitem, do not use option lvoOwnerDrawFixed,

because such style prevents system from notifying the application for each subitem to be drawn

in the listview and only notifications will be sent about entire items.

See also NM_CUSTOMDRAW in API Help.

property OnTVBeginDrag: TOnTVBeginDrag ;

Is called for tree view, when its item is to be dragging.

property OnTVBeginEdit: TOnTVBeginEdit ;

Is called for tree view, when its item label is to be editing. Return TRUE to allow editing of the

item.

property OnTVEndEdit: TOnTVEndEdit ;

Is called when item label is edited. It is possible to cancel edit, returning False as a result.

property OnTVExpanding: TOnTVExpanding ;

Is called just before expanding/collapsing item. It is possible to return TRUE to prevent

expanding item, otherwise FALSE should be returned.

property OnTVExpanded: TOnTVExpanded ;

Is called after expanding/collapsing item children.

property OnTVDelete: TOnTVDelete ;

Is called just before deleting item. You may use this event to free resources, associated with an

item (see TVItemData property).

property OnTVSelChanging: TOnTVSelChanging ;

Is called before changing the selection. The handler can return FALSE to prevent changing the

selection.

property OnTBDropDown: TOnEvent;

This event is called for drop down buttons, when user click drop part of drop down button. To

determine for which button event is called, look at CurItem or CurIndex property. It is also

possible to use common (with combobox) property OnDropDown .

property OnTBClick: TOnEvent;

The same as OnClick .

property OnTBCustomDraw: TOnTBCustomDraw;

An event (mainly) to customize toolbar background.

205

205

205

205

205

205

234

205

219

269

271

277

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

property OnDTPUserString: TDTParseInputEvent;

Special event to parse input from the application. Option dtpoParseInput must be set when

control is created.

property OnSBBeforeScroll: TOnSBBeforeScroll;

property OnSBScroll: TOnSBScroll;

property OnDropFiles: TOnDropFiles;

Assign this event to your handler, if You want to accept drag and drop files from other

applications such as explorer onto your control. When this event is assigned to a control or form,

this has effect also for all its child controls too.

property OnScroll: TOnScroll;

property OnRE_InsOvrMode_Change: TOnEvent;

This event is called, whenever key INSERT is pressed in control (and for RichEdit, this means, that

insert mode is changed).

property OnProgress: TOnEvent;

This event is called during RE_SaveToStream , RE_LoadFromStream (and also during

RE_SaveToFile , RE_LoadFromFile and while accessing or changing RE_Text property). To

calculate relative progress, it is possible to examine current position in stream/file with its total

size while reading, or with rich edit text size, while writing (property RE_TextSize [rsBytes]).

property OnRE_OverURL: TOnEvent;

Is called when mouse is moving over URL. This can be used to set cursor, for example,

depending on type of URL (to determine URL type read property RE_URL).

property OnRE_URLClick: TOnEvent;

Is called when click on URL detected.

268 267

268 268 244

238

245

278

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

TControl fields

FormString: KOLString;

String of the current parameter. It is cleared after each call to FormExecuteCommands , so no

special clearing is required.

fDoubleBuffered: Boolean;

True, if cannot set DoubleBuffered to True (RichEdit).

fClassicTransparent: Boolean;

True, when creating of object is in progress.

fDestroying: Boolean;

True, when destroying of the window is started.

fBeginDestroying: Boolean;

true, when destroying of the window is initiated by the system, i.e. message WM_DESTROY fired

fChangedPosSz: Byte;

Flags of changing left (1), top (2), width (4) or height (8)

fIsForm: Boolean;

True, if the object is form.

fIsApplet: Boolean;

True, if the object represent application taskbar button.

fIsControl: Boolean;

True, if it is a control on form.

fIsMDIChild: Boolean;

TRUE, if the object is MDI child form.

fIsCommonControl: Boolean;

True, if it is common control.

fWindowed: Boolean;

True, if control is windowed (or is a form). It is set to FALSE only for graphic controls.

fCtlClsNameChg: Boolean;

True, if control class name changed and memory is allocated to store it.

fChildren: PList;

List of children.

fTmpBrush: HBrush;

246

224

279

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Common Properties and Methods - TControl

Brush handle to return in response to some color set messages. Intended for internal use

instead of Brush.Color if possible to avoid using it.

fMenu: HMenu;

Usually used to store handle of attached main menu, but sometimes is used to store control ID

(for standard GUI controls only).

fMenuObj: PObj;

PMenu pointer to TMenu object. Freed automatically with entire chain of menu objects attached

to a control (or form).

fImageList: PImageList;

Pointer to first private image list. Control can own several image, lists, linked to a chain of image

list objects. All these image lists are released automatically, when control is destroyed.

fTextColor: TColor;

Color of text. Used instead of fFont.Color internally to // avoid usage of Font object if user

is not accessing and changing it.

fColor: TColor;

Color of control background.

fClientRight: ShortInt;

Store adjustment factor of ClientRect for some 'idiosincrasies' windows, // such as Groupbox

or Tabcontrol.

DF: TDataFields;

Data fields for certain controls. These are overlapped to economy size of TControl object.

fNestedMsgHandling: SmallInt;

level of nested message handling for a control. Only when it is 0 at the end of message handling

and fBeginDestroying set, the control is destroyed.

stdcall;

MDI client window control

4.26 Programming in KOL (without MCK)

Programming in KOL (without MCK). Create a Form and start a Message Loop.

In order to start designing a "clean" KOL project (ie without MCK), it is enough to create a

project as usual and remove the first module with a form from it. After that, in the project file,

remove the reference to Forms and all other VCL units from uses (replacing them with a

reference to KOL), and from the body of the project code, begin ... end. delete all lines (there

are two of them, and they refer to Application to initialize and launch the application). Now you

can add the first lines of code:

221

221 221

221

248

278

280

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Programming in KOL (without MCK)

Applet: = NewForm (nil, 'form title'); Run (Applet);

This is a minimal KOL form application. You can try compiling it and running it. If something

doesn't work out for you, take a look at the demo project called Empty. If you do nothing else,

then the size of this application in Delphi5 is 23 Kilobytes. If, in the project options, add the path

to the folder with the replacement of system modules to the list of search paths, and add

SMALLEST_CODE and NOT_USE_RICHEDIT to the list of conditional compilation symbols,

then the application size is reduced to 10.5 Kilobytes.

Please note: if you compile a project in Delphi version 6 or higher, then

sometimes the compiler has an incomprehensible tendency to add additional

functions to the code from the Variants.pas module (which appeared in this

version for the first time). The size of the application grows dramatically by

several kilobytes, even if you didn't use the options. Sometimes it is possible to

get rid of this module by various manipulations (reopening the project in Delphi,

restarting the environment, rebuilding the project). The most efficient way is to

download the FakeVariants.zip archive, unpack it (the Variants.pas file, from

which everything that is not required has been removed) into a directory and

specify the path to it in the project options. Well, or just unzip it into your project

folder.

The global procedure Run, which is called in the above example, receives a window object as a

parameter, calls for it to create a window, and then enters a loop of waiting and processing

messages. This cycle continues until the application is terminated (i.e., until the global variable

AppletTerminated is set to true). Then the global procedure TerminateExecution is called (if it

is still needed), and this is where the application really ends.

The programmer always has the opportunity to write his own analog of the Run procedure, if

necessary, and call it exactly. For example, in one of my applications, I changed this procedure in

order to process messages from the mouse and keyboard first, before other window messages

(otherwise, when multithreaded work with an increased priority, problems with reaction to the

keyboard and mouse began to arise).

When programming in KOL without MCK, you should pay attention to how to assign event

handlers. The easiest way is to create a custom object (derived from TObj), define a method for

it that matches the handler type description, and specify that method as the event handler.

But you can use ordinary procedures instead of methods, turning them into a

method using the MakeMethod (data, proc) function and not forgetting to

convert the resulting method to the required handler type, for example:

Button1.OnClick: = TOnEvent (MakeMethod (nil, @ Button1ClickProc));

It should be remembered that in the declaration of the handler procedure, you

must add an additional parameter of the pointer type as the first. This pointer

corresponds to a pointer to an object instance, that is, the same pointer that you

assigned in the first parameter in the call to the MakeMethod function will be

38 42

281

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Programming in KOL (without MCK)

passed here. For example, to correctly handle the above button click event, the

titlethe handler should look like this:

procedure Button1ClickProc (Dummy, Sender: PControl);
begin
 ...

In the case of a different type of handler with more parameters, they also follow in the usual

order, but the same dummy parameter must be added first.

4.27 MCK Design

· Creation of on MCK project

· Form customization

· Coding

4.27.1 Creation of on MCK project

Oh, how many wonderful discoveries we have

Prepares the spirit of enlightenment!

And experience, son of difficult mistakes,

And a genius, a friend of paradoxes,

And chance, Fortune's half-brother.

(A.S. Pushkin)

Now that you've got the initial idea of the capabilities of forms, applets and - in general - other

visual elements, it's time to talk a little about the development of MCK projects. The ability to

create an MCK project, toss a couple of MCK components onto a form, configure them and

launch the project will allow the reader, upon further reading, to feel what he has read through

experience. For, as experience shows, there is no better way to learn than ... experience.

As already mentioned at the beginning of the presentation, the Mirror Classes Kit, i.e. a set of

mirrored components for the KOL library did not appear immediately. The ideology of the KOL

library denies the very possibility of using components, i.e. classes derived from TComponent,

classes that could exist both at the stage of development and at the stage of application

execution (in the second case, loading its initial state from the resources of the form, during its

construction). This is how the Delphi environment works, and I must admit, this is a very

convenient approach that significantly speeds up application development, and it is not for

nothing that Delphi is proudly called RAD - Rapid Develpment Tool, or, translated into Russian:

rapid development tool.

Nevertheless, KOL managed to build a not the worst mechanism for visual programming. MCK

contains a set of mirror components (or simply - mirrors), roughly corresponding to the set of

varieties of simple KOL objects. In the same way as in the development of a VCL project, these

mirrors are thrown onto the form from the component ruler, their properties are configured

visually (with the mouse, the Object Inspector, calling special component editors). And as a result

of the joint work of these components at the development stage, the text of the source files of

the projects is modified in such a way that, when compiled, we get a "clean" KOL project, in

281

285

287

282

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
MCK Design

which there are no classes, components, and other references to VCL, but only simple objects

object, and a minimum of code with all the necessary functionality.

Perhaps it is worth highlighting this feature, and emphasizing once again that MCK components

do not participate in the working version of the code. Their task is only to generate code for

KOL, which is placed mainly in inc files, and when the application is executed, it is called to create

the form along with all its children. That is, the form at run time does not create itself from the

form resource, as is done in a VCL application, but is built dynamically by calling the appropriate

NewXXXX functions, assigning initial values to properties and events in accordance with the

settings of MCK components made at the design stage. ...

In fact, the MCK idea is not so trivial. The mirrored component code contains a number of tricks

designed to "trick" the development environment. As a result, the Delphi IDE thinks that it is

dealing with a regular VCL project with classes and forms loaded from dfm resources, although

this is far from the case.

Creating an MCK project starts with the same thing as creating a VCL project,

namely: in the File menu of the development environment, select the New

Application item. As a result, the project Project1 is created, containing three

files (so far they are stored in memory): this is Project1.dpr - the source file of

the project, Unit1.pas - the source file of the only form module so far, and

Unit1.dfm - the form file. The next step that now needs to be done is to save

the project in a folder. To do this, we select File | Save All in the menu, and we

are sequentially prompted to save Projec1.dpr and Unit1.pas (the Unit1.dfm

file is saved automatically in the same folder where the Unit1.pas file is also

saved). When saving, it is worth changing the name of the Unit1.pas module

(unless you intend to leave this name forever: Renaming modules in an MCK

project can be a bit tricky, so it's best to think about module names in advance).

However, you should not change the name of the project for now, let it remain

Project1 (below I will explain why).

Another important point: keep all source files of the MCK project (at least the

form modules and the project file itself) in one directory. If you put them in

different folders, MCK may not be able to detect them and make the necessary

modifications.

Now that the project has been saved, we begin to "convert" it to an MCK project. At this point,

the MirrorKOLPackageXX package for the corresponding Delphi version should already be

installed. Since I work with MCK components most of the time, after installing this package, I

immediately go to the Component | Configure Palette menu and drag this set of components

closer to the beginning, so as not to scroll through all the palette tabs in a row.

Conversion consists of four very simple steps. But they must be executed exactly, otherwise

question # 1: "why is KOL / MCK not installed?" - is inevitable. Make your life easier, read the

instructions very carefully !.

283

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
MCK Design

TKOLProject component

Firstly, you need to find it on the component ruler in the KOL tab and drop the TKOLProject

component onto the form.

One such component must always be present in an MCK project. By the way, you shouldn't use

Delphi's ability to open more than one project at the same time. As soon as two TKOLProject

components are loaded simultaneously, they will start loudly complaining about the

inadmissibility of the situation that has arisen.

When the TKOLProject component is created for the first time, or when opening an MCK

project, it "comes to life" and starts checking regularly (by timer, the checking period is

regulated by the autoBuildDelay property - in milliseconds) whether MCK components have

requested code regeneration due to changing a property in any MCK mirror (including in the

TKOLProject component itself). As soon as such a change is committed, by the next event from

its timer, all forms of the project are searched for, and for those that have changed, a code

regeneration is called, and, if necessary, a new version of the code for the project itself is

generated.

TKOLProject component - projectDest property

Secondly, you must now select the TKOLProject component on the form, switch to the Objects

Inspector (F11 key), find and change the projectDest property. Enter the "real" name of the

284

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
MCK Design

project in this field, other than Project1. For example, test1 is a perfectly valid name for a test

project. (The project is ready for conversion, there is only a small step left to do).

TKOLForm component

Thirdly, find on the ruler, also in the KOL tab, the TKOLForm component, and also drop it on

the form. Didn't you notice anything? In vain: you need to look carefully. If you had looked at the

source code of the module before you dropped that component on the form, and compared it

with what happened after that, you would have noticed that there were quite a lot of changes.

But more on that later. There is one more step to take.

A number of changes are made to the code to ensure (through conditional compilation

directives) that the compiler is invisible to the code that should not be compiled. At the same

time (fortunately for MCK) the Delphi IDE itself "does not notice" the conditional compilation

directives, which make undesirable code fragments invisible to the compiler. As a result, the

form file, mirrored components, and form declaration text remain "visible" to the Object

Inspector and the IDE, which continues to treat the project as a normal VCL project. In particular,

even the Code Completion tools continue to work, and the navigation tools between methods

and their declarations in a fictitious form class from now on continue to work. At least up to and

including Delphi 2010.

In addition, the {$ INCLUDE ...} directive is added to link to the newly created file

<module_name> _1.inc, which contains the procedure for initializing the form New

<form_type_name> (Form_Var, Aparent).

285

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
MCK Design

Save the MCK Project

Fourth, you need to save the result (File | Save all), and close the project.

Why close? Because now in Delphi, the loaded is not the MCK project that we

created as a result of the previous four steps, but a VCL project named Project1.

We now need to open our project. "Test1" seems to be what we called it, right?

Not? Well, you know better.

In principle, you can not close the project, but immediately select the File | Open

Project menu item, and select the test1.dpr file for loading (well, or whatever you

called it there). Moreover, at this moment I usually still pre-select the

Project1.dpr file in the open dialog and press the <Delete> button - this file will

no longer be needed (as the great Shakespeare said, "the Moor has done his

job, the Moor can leave").

4.27.2 Form customization

Now that the newly created MCK project is open, you can try to compile it and run it. As usual,

press the green arrow on the Delphi toolbar, or press the F9 key.

Did not work out? Probably, it is necessary to register the path to the KOL.pas file in the

project options. In the Delphi menu, select: Project | Options, then on the Directories /

Conditionals tab, find the Search Paths field, enter C: \ KOL here - well, or the path where you

"installed" the KOL library.

The project should compile and run, and the form should appear. So far, there is nothing on it,

of course. The form window can be moved, resized, minimized, and then closed.

Look in the project folder (to do this quickly, you can right-click on the TKOLProject

component and select the Open Project Folder menu item - it is almost at the very top of the

list), and select the assembled executable file. See what the size of the executable file is. You can

see that the size is small enough compared to a single-shape project that is obtained in VCL (I

now have 22 Kilobytes). You can make it even smaller right now if you have already

downloaded and unpacked the files to replace system modules in a folder (for Delphi 7:

https://www.artwerp.be/kol/sysdcu7.zip). Open the project options (Project | Options) and in

the Directories / Conditionals tab in the Search Paths field, add (separated by semicolons)

the path to this folder. Now the project needs to be rebuilt (Project | Build). Now see what

happened to the size of the exe file.

Perhaps there is a little more that can be done to demonstrate the potential for size savings. If

right now, select the TKOLForm component on the form, and change the values of the

defaultPosition and defaultSize properties to true in the Object Inspector, add a couple more

symbols to the list of conditional compilation symbols, separated by a semicolon after the

KOL_MCK symbol available there: SMALLEST_CODE and NOT_USE_RICHEDIT , then I get

13.5 Kilobytes. And what's great is that the resulting executable file can be compressed using a

38 42

https://www.artwerp.be/kol/sysdcu7.zip

286

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
MCK Design

compression utility such as UPX or AsPack up to 8.5 Kbytes, i.e. in about the same ratio (by a

third) as a large VCL project.

Next, let's adjust the shape. If we just want to change its size or position, then to change these

parameters of the form during development, we should proceed as usual, i.e. grab the mouse,

and resize the form. Yes, the corresponding properties defaultSize and defaultPosition will

have to be set back to false if you are not satisfied with the system defaults.

All other form properties should now be configured through the TKOLForm

component... If you select a form, as you did in a VCL project, and try to change

some property, like Caption, or something else, it will not affect the form in any

way when it starts. So, here's rule # 1: to change the properties of a form in

MCK, you need to select the TKOLForm component and change the required

properties in it (the same Caption).

Now you can customize the form however you want. MCK will generate code in

the Uni1_1.inc module (this is where the code for initializing the form,

automatically generated by the MCK components, is located). There is usually no

need to load this module into the IDE editor.

And in any case, do not try to fix anything manually in this inc file.: such

fixes will survive only until the next change in any of the properties of any MCK

component, after which a new version of the form initialization code will be

generated, and your work on fixing will disappear without a trace.

If you need to add some code of your own in the initialization of the form, you can do this in the

event handler OnFormCreate, OnBeforeCreateWindow, or in OnShow. Note that if some

code in the OnShow event handler needs to run once, you must ensure that OnShow is called

the first time. For example, set up your own boolean variable OnShow_Fired, which should be

set to true after the first execution of OnShow, and set the appropriate check.

if not OnShow_Fired then
begin
 // code that will work
 // only in the first call to OnShow
end;
OnShow_Fired: = true;

Be aware in the OnFormCreate "event" handler that window handles may still not exist for

form visuals. In the OnBeforeCreateWindow "event" handler, window handles are not

guaranteed to exist. And some objects may not be created as objects at this moment (i.e.

pointers to them still contain nil, and an attempt to access their properties, methods, fields will

lead to the crash of the application in this case). Those. you need to add the appropriate checks

to your handlers code.

159

https://www.artwerp.be/upxgui/index.htm

287

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
MCK Design

4.27.3 Coding

Perhaps it is necessary to clarify some of the features of writing code for MCK. Unlike "direct"

programming in KOL, in MCK a form holder object is created for the form, produced directly

from TObj (you can do the same with manual KOL programming, but this is entirely at the

discretion of the programmer). This object is "parallel" to the VCL form, but is not a visual object.

The form itself (as an instance of an object of the PControl type) is represented in it by the Form

field. That is, for example, if a TForm1 form was created in your VCL project, an object of the

TForm1 type with the PForm1 pointer type is created in the MCK project "at the same

place". Those. here it is seen by the compiler. And all the components thrown onto the form

during development, including the form itself (mirrored to the non-visual TKOLForm component

lying on the form),

Note. In fact, the commonplace banality of this description of the use of the word Form hides truly

fantastic phenomena. For example, if you write the code proposed in the next paragraph in the

OnFormCreate handler, then at the very moment when you type it from the keyboard, you may

find that Code Completion, i.e. automatic code completion system, perfectly "sees" the Form

variable. And you can go to the declaration of this field in the field structure of the "former VCL-

form" (ctrl + click). The great thing is that this variable is "visible" at the same time as the code is

being written, to the compiler when the code is compiled, and to the debugger when stepping

through it. Probably should have applied for a patent ... but now it's too late. *

The conclusion from the above is the following. The difference between writing code for VCL

and for KOL + MCK is that in order to access a property, method or event of the form itself in

KOL, you must use Self.Form instead of Self. For example, to change the title of a form in the

OnFormCreate event handler, the code should be like this:

Form.Caption: = 'new caption';

4.28 Application graphic resources

Just like any PE * application in Windows32, the KOL application allows you to store the graphics

resources necessary for its operation along with the executable file. These resources can be

loaded by various methods, including implicit loading of resources by object methods, but

ultimately they all boil down to calls to the appropriate API functions that create the required

graphical object and return its descriptor.

From an application size perspective, the number and size of these resources can be important.

Sometimes you can significantly reduce the size of resources if you use careful selection of the

most suitable formats for storing graphics. First of all, notice the number of different colors

required to represent a bitmap or icon graphic. Even if the picture uses non-standard colors that

are not present in the standard system palette, but the number of these colors does not exceed

256, then it makes sense to use the 8 bits per pixel format. And if there are no more than 16

colors, then 4 bits per pixel is perfect. Even in the case of the transition from the full-color format

24 bits per pixel to the 8-bit format, for one image with a size of 100x100 pixels, a saving of

20,000 bytes will be obtained - 256x4 = 18976 bytes. Here I have subtracted the cost of storing

92

288

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Application graphic resources

the 256-color palette itself at 4 bytes per color. I will also note that there is a presentation format

(considered obsolete, but quite workable), in which not 4, but 3 bytes are spent per color in the

palette. When using this format, you can save at least another 256 bytes (the image header in

this format is also a few bytes shorter, so the savings will be slightly higher).

For large image sizes, where the total number of different colors used is already large enough to

be limited to 256, consider using 16 bits per pixel images. An unpleasant feature of this format is

that the R and B color channels (red and blue) discard the least significant 3 bits, and the G

channel (green) discards the least significant 2 bits. In some cases, such "rounding" can slightly

degrade the quality of the picture, especially if it contains elements of smooth gradient fill. But in

general, in many cases, the deterioration in image quality is hardly noticeable to the eye.

Some novice programmers have the misconception that storing images in a compressed format,

as opposed to storing them in a bitmap, can save application size. Yes, it can, but only if the total

effect of compressing all such resources overrides the negative effect of adding appropriate

decompression algorithms to the code. Usually, the presence of an unpacker for any of the most

common formats GIF, JPG, PNG requires more than 30KB of additional code for each.

If the total effect of compressing images in resources by using one of these formats exceeds the

size of the unpacker added to the program code, then the game is worth a certain number of

candles. However, in this case, you should also take into account that if you plan to package the

application using some external packer, then the effect of such packaging will be significantly

reduced if some of the resources inside the application are already packed. Very often it makes

sense in this case not to use any graphics packers at all, and store resources in the form of "flat"

uncompressed "bitmaps", and use an external packer or a simple archive of the application file

at the time of its distribution to end users.

There is another compression format that is sometimes quite useful (for example, in the case of

images containing large areas of one color) that is often forgotten: it is RLE encoding. The

TBitmap.LoadFromStreamEx method allows loading such images without any problems (thanks

to V. Gavrik, who added this method to KOL). Most likely, you will have to load such a resource

with your own code, referring to the above method, but this is no more difficult than using

loaders of other formats with compression. You will, of course, have to find software that will RLE

compress images before packaging them into resources.

4.29 Graphics Resources and MCK's

If you are using MCK, it will be useful to know that when using graphic resources that are

automatically added to the application, MCK will automatically reduce the number of colors

used, if it finds it possible. When generating resources containing images, the number of

different colors used is counted, and the lowest possible representation in bits per pixel is used,

in order to save the resulting image. Note also that the 16 bits per pixel format will be used

automatically only when it does not require discarding the least significant bits in the R, G, B

channels (see the previous paragraph). The maximum format used for graphic resources of 24

bits per pixel is used only as a last resort, when all other formats do not fit.

289

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Programming in KOL
Graphics Resources and MCK's

In the first versions of MCK, to build resources and generate * .RES files, the MCK add-in called

an external resource compiler, which was BRCC, a Borland resource compiler that comes with

the Delphi compiler and development environment. But this compiler still does not know how to

work with graphic resources containing more than 256 colors, so in the end I refused to use the

BRCC compiler. / Perhaps the limitation is due to the fact that the VCL itself is not able to load

such resources, so there is no point in remaking the resource compiler for use with the VCL. But

this is my guess, not necessarily true /.

Now MCK generates the resource file on its own by simply adding the correct resource header

to the graphic file. The result is much faster and less problematic. If you do not use MCK, then to

build resources you can try using other resource compilers, for example MS VC ++, or Resource

Workshop, by the same Borland company. Although written for Windows 3.1, it works great in

XP as well, although its interface is long overdue to send to the museum of antiquities. Or you

can watch how MCK performs this task and write your own bitmap-to-res converter.

Window Objects

This chapter will be devoted to simple controls with a minimum of specific properties,
methods and events

292

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects

5 Window Objects

This chapter will be devoted to simple controls that contain (even this is not necessary) a single

line of text, a minimum of specific properties, methods and events in the TControl object

type (in which they "live" together with many other kinds of visual objects, without the need

to branch out into a separate object type). a type).

It should be noted right away that since the contents of almost all of these visual objects (text,

picture, combination of text and picture) have easily defined sizes, then almost all of them can

have the property of automatically resizing to the content (see the AutoSize method). Exceptions

to this rule are panels (since their contents are, first of all, visual objects child of them).

· Labels (label, label effect)

· Panel (Panel, Gradient Panel, Gradient Style)

· Groupbox

· Paintbox

· Imageshow

· Splitter

· Scrollbar

· Progressbar

· Scrollbox

· Buttons

· Switches (Checkbox, Radiobox)

· Visual objects with a list of items

· Text input fields (editbox, memo, richedit)

o Text input field constructors (edit)

o Specifics of using common properties (edit)

o Input field options (edit)

o General properties of input fields (edit)

o Empowering: direct API access (edit)

o Features of Rich Edit

o Mirrored input field classes (edit)

· List of Strings (Listbox)

· Combobox

· General List (List View)

o List Views

o Column management

o Working with items and selection

o Adding and removing items

o Element values and their change

184

293

294

296

296

297

298

299

300

300

301

304

304

305

306

306

307

308

309

309

314

314

316

318

320

320

321

322

322

293

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects

o Location of items

o List view

o Sorting and searching

· Tree View

o Properties of the whole tree

o Adding and removing nodes

o Properties of parent nodes

o Properties of child nodes

o Node attributes: text, icons, states

o Node geometry and drag

o Editing text

· Tool Bar

o General properties, methods, events

o Setting up the ruler

o Button properties

o Some features of working with the toolbar

· Tab Control

· Frames (TKOLFrame)

· Data Module (TKOLDataModule)

· The Form

· "Alien" Panel

· MDI Interface

· DateTime Picker

5.1 Labels (label, label effect)

So one of the simplest objects of this kind is label. Label constructor:

NewLabel(Parent, s) - returns a pointer to the created object of the PControl type, which in

the constructor receives the visual and behavioral features necessary for the label, and sets the

passed parameter as the text (Caption) of the label . Almost all constructors of visual elements

on a form (and this one as well) have a Parent parameter of the PControl type, which indicates

which window object is the parent of the object created by this constructor.

To a large extent, the label in KOL is similar to the TLabel class in the VCL, but there is an

important "but": in KOL, the label is a window object. There is also a graphical label, but it will be

discussed later, along with all the other graphical (windowless) controls. In addition to the above

general properties, methods and events, the label actually has nothing more and there is

nothing that could be called characteristic only of the label. If it differs from its other TControl

neighbors in any way, it is its behavior. namely: the label cannot have the input focus, the tab

order (TabStop, TabOrder), so the keyboard keypress events do not make sense for it.

323

324

324

325

327

327

328

328

328

329

329

330

333

334

335

335

336

339

340

341

342

342

344

345

346

294

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Labels (label, label effect)

There is an additional restriction introduced solely for the convenience of manipulating objects

at the design stage. The label, like many "leaf" controls, cannot become a parent for other visual

objects *. If any window controls could become the parents of any visual objects, then when

dropping controls from the component ruler onto the form, you would have to aim very

carefully, looking for a place for a new child object. Now, in many cases, it is enough to get

somewhere inside the future parent. Of course, when writing code manually (even in MCK), no

one bothers to create controls, the parent of which is a label or a button.

There are two other flavors of window labels in KOL. Constructor:

NewWordWrapLabel(Parent, s) - creates a label with text wrapped by words when the text

reaches the right border of the label. With the help of such a label, it is convenient to make

multi-line explanatory inscriptions and messages on the form. There is a small peculiarity of

using the AutoSize method for a label with word-by-word breaks: when automatically resizing

it, it never changes its width, but only its height (this has nothing to do with alignment with the

Align property, it is only about automatically adjusting the object's size to the content, in this

case - for multi-line text).

Constructor:

NewLabelEffect(Parent, s, shadowdeep) - Creates a custom label with additional visual

effects. The text in such a label can have a shadow that is drawn at a specified offset. The color

of the shadow text uses the (optional) Color2 property of the TControl object. The most

important feature of this label is that it is the only one capable of correctly displaying text in a

font that has a non-zero rotation angle (FontOrientation) when rendering its content on its

own. You can even animate the rotation of the text using this label (see the ADV demo

application).

Note that the label must use a True Type font for the text to rotate. This applies not only to

"labels with effects", but also drawing on the canvas with the changed FontOrientation property

for the font.

Additional properties for controlling text label with effects in TControl:

ShadowDeep - shadow depth in pixels (can be negative or zero). Initially set as a parameter to

the NewLabelEffect constructor;

TKOLLabel and TKOLLabelEffect mirrors are available for Cue and Cue Effects for use in MCK

projects. There is no separate mirror for a “word wrap” label, the same TKOLLabel is used, you

just need to set the wordWrap property to true using the Object Inspector.

5.2 Panel (Panel, Gradient Panel, Gradient Style)

345

345

347

295

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Panel (Panel, Gradient Panel, Gradient Style)

Another important and commonly used type of control is panel. Panel constructor:

NewPanel(Parent, edge) - creates a panel of TControl type (by returning a pointer of

PControl type to it - I will not dwell on this point anymore). The difference in the parameters is

that the caption text string is not passed to this constructor. It's not that the panel can't have text.

Maybe the same as the label. But here's the question: how often do you leave the default title

(Panel1, Panel2, ...) for the panel in your Delphi project? Personally, in almost all cases, I

immediately go to the Caption property in the Object Inspector and press the <Delete> button.

Thus, although the panel can have text, when designing the designer for it, I decided that usually

this is, after all, an unnecessary parameter, and it is much more important when creating the

panel to set the type of border for it (which is what is done). The panel can be flat, convex or

depressed - which is specified by the second parameter of the constructor.

The panel has no other features. Unlike a label, it can (and this is what it is designed to do)

parent other visual elements on a form. Including, when designing a form in MCK, the panel

"accepts" the controls thrown onto it from the KOL toolbar as child controls.

Additionally, KOL has a special panel with a gradient fill effect for its content.

NewGradientPanel(Parent, Color1, Color2) - creates such a panel with the default style

gsVertical. This fill style can be further modified by modifying the GradientStyle property, or by

using an alternative constructor:

NewGradientPanelEx(Parent, Color1, Color2, style, layout)

There are styles of vertical, horizontal, diagonal - left to right top to bottom, and left to right

bottom to top, as well as rhombic, elliptical and rectangular fill. It is also possible to control the

placement of the conditional center of the fill (the last parameter of the second constructor is

layout).

The gradient panel is a full-fledged panel, it can contain arbitrary child visual objects. If you use

transparency (but not for all controls this is possible), you can get amazing effects. Of course,

using a gradient bar adds a few kilobytes to the size of the application, so the choice between

beauty and size is yours.

345

345

345

296

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Groupbox

5.3 Groupbox

Another important window object that is intended to be used as a panel is the group box. In fact,

in the Windows API, a group is a special kind of button. When I implemented this object in KOL, I

was, first of all, interested in the fact that it provides automatic rendering of its very characteristic

appearance, i.e. independently provided the image of the header, frame, and at the same time

could be used exactly as a parent for child controls, like a panel.

Constructor:
NewGroupBox(Parent, s) . Actually, the group has no other special properties.

Screenshot notes: Since the gradient bar cannot display its title, it is labeled with a label placed

on it with transparency added. In the figure, after its compression, vertical stripes became

noticeable. In fact, such streaks are only noticeable when the desktop resolution is set to 64K

colors or less.

5.4 Paintbox

Perhaps a paint box is an even simpler window object than a label or panel.

Constructor:
NewPaintBox(Parent)

It differs from other interface objects in that its text is not displayed in any way at runtime. This

object is not intended to render anything on its own at all: the entire rectangle of its window (the

size of which is the same as the client's size, that is, it does not even have a non-client part, or a

border) must be drawn by your code in the OnPaint event (OnEraseBkgnd can also be used if

needed). In general, if an OnPaint event handler is not assigned, the standard code will erase

the rectangle (filled with a Color or Brush).

345

345

297

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Paintbox

In both KOL and MCK, the paint box can be the parent of other controls. In fact, introducing a

separate type of control for the paint box is redundant, since the panel may also have no border,

and its image can also be painted in the OnPaint event. But it is more customary and more

convenient to have a separate specialized object for drawing purposes.

In order to draw an image in the paint box control, it is enough to assign the OnPaint event and

call the necessary methods of the picture object to paint on the canvas of our "box". This task is

greatly simplified by a specially developed kind of control, which is called so - image show

("showing a picture", or "show a picture", whatever you like).

In MCK, the mirror for the paint box control is TKOLPaintBox.

5.5 Imageshow

In order to draw an image in the paint box control, it is enough to assign the OnPaint event and

call the necessary methods of the picture object to paint on the canvas of our "box". This task is

greatly simplified by a specially developed kind of control, which is called so - image show

("showing a picture", or "show a picture", whatever you like).

Constructor:
NewImageShow(Parent, imagelist, i)

Creates a "show" -control, which displays the i-th picture from the list of pictures imagelist .

In order to remove the border surrounding it for the "show" control, it is enough to set the

HasBorder property to false. Among other things, setting automatic sizing for this control will

set the size of the control in accordance with the dimensions of the images.

In MCK, the mirror for the "show" control it is TKOLImageShow.

297

345

174

298

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Splitter

5.6 Splitter

Windows does not have a dedicated window that would deal with "splitting" adjacent elements.

Nevertheless, such an element is widely used in applications when it is necessary to provide the

user with the ability to dynamically change the width or height of one element due to the

corresponding size of the adjacent visual element. Such an object is implemented simply as a

regular panel with additional window message handlers that allow you to grab the object with

the mouse and drag it to a new location (movement is allowed along one axis, only horizontally,

or vertically). In this case, the "splitter" automatically resizes the shared visual elements.

Delimiter constructor:
NewSplitter(Parent, i, j

Creates an object of the PControl type with the separator functionality, assigning the values i and

j to the MinSizePrev and MinSizeNext properties. By default, no division axis is specified. The

splitter object "learns" whether to split two adjacent windows vertically or horizontally when it

gets the Align property equal to caLeft, caRight (separation of horizontally adjacent objects) or

caTop, caBottom (vertical separation).

Properties and events:

MinSizePrev - the minimum size of the visual object "before" the separator. I put "before" in

quotation marks, because the meaning of this definition depends on the alignment of the

dividing window: for caLeft and caTop, "before" means to the left and above, and for caRight

and caBottom - to the right and below;

MinSizeNext - the minimum size of the opposite of the two controls shared by the split object;

SecondControl - returns (and allows to set) the pointer of the visual object "after" the separator,

the dimensions of which will be tightened when the location of the separator window is

changed;

OnSplit - an event that is triggered every time when, in response to a signal about mouse

movement (when dragging the separator), the object must make a decision about the

admissibility of new coordinates (and, accordingly, new sizes of shared objects).

As you can see, this object is very simple. It is only intended to allow two (aligned) visuals to be

resized by moving the border strip between them. If you need to have several such delimiters in

a row (that is, in the form <window1> [separator] <window2> [separator] <window3>, then this

object will not be able to function normally. In this case, make nested panels, and separate the

parents, for example, according to the following scheme: <<> [] <>> [] <>.

MCK has a TKOLSplitter component that allows you to customize this type of window at design

time.

345

299

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Scrollbar

5.7 Scrollbar

A tool window of this type is usually not required on its own. Almost all windows that are

containers for lines of text, images, or other objects automatically provide scroll bars when

needed. However, a few years after the creation of KOL, such a window object was added. It

allows you to organize the scrolling of arbitrary elements without being part of any window

object.

Constructor:

NewScrollBar(Parent, side) - Creates a scroll element, giving it a direction - vertical or

horizontal.

In addition to the general visual properties inherent in all window objects, the scroll element has

a number of specific ones only for it. Namely:

SBMin - minimum scroll position (initial value 0);

SBMax - maximum scroll position (initial value 32767, but any integer greater than SBMin is

allowed);

SBMinMax - intended for obtaining or changing the properties of SBMin and SBMax in one

step, through the TPoint structure;

SBPosition - current scroll position, from SBMin to SBMax inclusive;

SBPageSize - page size. Used to scroll by page as an increment or decrement for SBPosition. In

addition, if this value is not zero, then the system automatically calculates the size of the "slider"

on the scroll bar, so that it, if possible, demonstrates how large one page of scrolling content is -

compared to the entire content (this size cannot visually, however, be less than a certain

minimum value determined by the system);

OnSBScroll - an event that is triggered when scrolling is performed. In the case of scrolling by

dragging the slider on the ruler with the mouse, this event occurs regularly until the slider is

released.

Mirror in MCK: TKOLScrollBar.

345

300

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Progressbar

5.8 Progressbar

To show how many percent of the data has already been processed, during the execution of any

lengthy operations, it is customary to use this element. It is called "progress".

Constructors:

NewProgressBar(Parent) - creates an object for the horizontal progress window, and

returns a PControl pointer;

NewProgressBarEx(Parent, options) - completely similar to the previous constructor, but

allows you to set additional options: vertical direction, and solid fill when painting progress (by

default, a set of "bricks" is used).

Properties, methods, events:

Progress - a number that defines the current "percentage" of execution. By default, the

maximum value for this property is 100, so this is really a percentage. But the maximum value

can be changed:

MaxProgress is the maximum value for the Progress property. To visualize the current progress

of execution, a part of it is painted in the ruler window, proportional in area to the Progress /

MaxProgress ratio;

ProgressColor - sets the color for shading (for the rest, the Color is used, as usual);

ProgressBkColor - the same as Color - the color for the window itself.

The MCK mirror TKOLProgressBar component chooses which constructor to add to the code

to initialize the form, based on design-time options.

5.9 Scrollbox

Sometimes there is a need to be able to accommodate a very large number of visual elements

on a form, so large that it will almost never be possible to see them all, even if the form is

expanded to full screen. Sometimes it is also necessary to ensure the scrolling of a large work

plane, such as a drawing box, the dimensions of which are large, and sometimes unknown in

advance.

In the VCL, for the first time, the form itself has the ability to scroll through its content using

standard scroll bars. But this feature is implemented so strangely that sometimes you just

wonder when looking at applications developed in Delphi and running on another computer. For

example, if the application itself was developed on a machine with completely different desktop

346

346

301

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Scrollbox

font size settings, then even on a small form its elements begin to not fit (although if they had a

normal font, everything would fit perfectly, and there would still be space). And that's when the

scroll bars appear. Moreover, the developer did not even order such an opportunity, just the

automatic inclusion of scroll bars for the VCL form is built in by default, and on his machine

everything fit perfectly without them. He doesn't even know

The KOL form, in principle, does not have any scroll bars. But, if you wish, you can use a specially

designed version of the TControl object for this purpose: a container, or a scrolling box. Its

constructors:

NewScrollBox(Parent, edgestyle, bars) - creates a universal "scroll box" for scrolling

some geometrically large object;

NewScrollBoxEx(Pafrent, edgestyle) - creates a scroll box that automatically scrolls

child visuals (if any).

In general, this visual element no longer has any other specific properties. Otherwise, it can be

considered a panel "with edges extending beyond the horizon". In MCK, the mirror for this object

5.10 Buttons

What is an application without buttons? There are two main types of buttons in KOL.

Constructors:

NewButton(Parent, s) - creates a regular button that cannot be changed in color (this is

how Windows works: someone once decided that all buttons must have a standard mouse color,

and since then it has been so, only not all programmers use standard buttons as a result in their

applications).

NewBitBtn(Parent, s, options, layout, bmp, n) - creates a "hand-drawn" button

(something like TBitBtn in VCL, but windowed). This type of button has much more options and

settings that allow you to set images for it (for several states: the button is not pressed, pressed,

inaccessible, the button is by default, or under the mouse cursor), drawing options (flat, without

borders, with fixation, with autorepeat, etc.). A significant drawback of such a button is that its

appearance is poorly compatible with XP themes.

In fact, since Windows XP appeared and became widespread, the use of "self-drawn" buttons is

strongly discouraged, as they can seriously spoil the appearance of the application, if not in the

standard XP theme, then certainly in some additional. Instead of the BitBtn button, it is quite

possible to use a standard button, placing the necessary child controls on it to display the button

title, image and any other desired visual elements. This is possible because there is no restriction

on how a button window can become parent to other windows. The limitation that is set on the

MCK mirror of the TKOLButton can be removed by setting the AcceptChildren property to

true. You just need to remember to set these child elements to the transparency of the mouse

(MouseTransparent).

345

345

344

344

302

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Buttons

There are a number of methods and properties specific to buttons:

IsButton - returns true for all kinds of buttons (including the radio buttons discussed in the next

chapter);

Click - a method that makes the button click and release as if it were clicked with the mouse. In

fact, the same is done for any control when calling this method, but it is most used for a button,

because it is for a button that such software clicks are visually observed by the user. For all other

controls, it is almost always much easier to call the associated OnClick event handler from your

code;

LikeSpeedButton - this property was already mentioned as a property that allows you to

prevent the control from capturing focus, and for a button it makes it look like a TSpeedButton

in VCL;

OnClick - this is the most important thing for a button (it is also present in the general

description for all visual objects): because, why do we need a button at all, if we do not handle

the events of pressing the button;

In addition to the general properties of the button, for bitbtn, i.e. for a drawn

button, TControl has a whole set of additional properties, methods and events:

OnBitBtnDraw - a special drawing event, allows you not only to completely replace the drawing

procedure, like OnPaint, but to complete its completion;

BitBtnDrawMnemonic - setting this property to true provides an image of an underline in the

text on buttons on a mnemonic symbol that has a prefix '&' (the ampersand '&' itself is not

displayed - this is the style that corresponds to the standard behavior of a regular button, with

the difference that all drawing bitbtn-buttons are executed by the library code, not the system);

Flat - flat button (borders appear only when the mouse enters the button);

TextShiftX - horizontal displacement of the text on the button when it is pressed;

TextShiftY - vertical displacement of the text when the button is pressed;

BitBtnImgIdx - the index of the image in the image list associated with the button (if only the

list of images is used, and not its own bitmap with several reliefs - glyph);

BitBtnImgList - a list of images for the bitbtn button (if used);

OnTestMouseOver - this event is used and generated only for the bitbtn-button (if set), so that

the user, with his own code, can set the area in which the mouse is considered to fall on the

button. This event allows you to form bitbtn-buttons of a completely arbitrary shape, in which

the clicking occurs not on the entire rectangle of the button, but only in the active zone allocated

by the user handler;

BitBtnInterval - interval of autorepeat of pressing the button, when the mouse is held down

after pressing the button for some time (if 0, i.e. the property has not changed, autorepeat does

not work).

303

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Buttons

Additional properties of all buttons:

DefaultBtn - should be set to true for the button to become the default button. Only one

button on a form can be the default button. If there is such a button, pressing the <Enter> key

causes this button to be "pressed" when the focus is on the form control (unless this control has

the IgnoreDefault property set to true);

CancelBtn - cancel button. Similar to the DefaultBtn property, it allows you to define (the only

one on a form) button as the "cancel" button that will be triggered when the <Escape> key is

pressed on the keyboard when this form is active;

For a button, both the DefaultBtn and CancelBtn properties can be set to true at the same

time, allowing you to "press" both the <Enter> key and the <Escape> key. But on the form

there can be only one button with the DefaultBtn property, and only one button with the

CancelBtn property.

In the case of a "hand-drawn" button (bitbtn), either a single image or an image from an

image list (imagelist) can be used. And in any of these cases, up to 5 "glyphs" can be

provided - one for each of the states: normal, pressed, disabled, focal, and highlighted. In the

case of a single image, the glyphs are arranged horizontally in the drawing, and the number of

glyphs provided is based on the size of the drawing (assuming all images are square). In the case

of a list of images, the glyphs themselves must be in consecutive index positions in the list, and

the number of glyphs provided is specified separately. When directly creating a button with a list

of images in Run-time, the number of glyphs is passed in the high word of the GlyphCount

parameter (in this case, the low word is used to pass the starting index of the glyph set for the

button in the list of images). When configuring such a button in MCK, there is a special design-

time pseudo-property for this: glyphCount.

Note: Prior to version 2.42, the order of glyphs for states was exactly this: normal, pressed,

disabled, focal and highlighted. Since version 2.42, the order has changed slightly, the "button is

not available" state now has an index of 1. But this can be reverted to its original state by adding

the conditional compilation symbol BITBTN_DISABLEDGLYPH2.

It is recommended that BitBtn buttons not be used in new applications, see the alternative

method for creating arbitrarily complex buttons at the beginning of the paragraph.

In MCK, both buttons have their own mirrors: TKOLButton and TKOLBitBtn. When setting up a

mirror for a regular button, you can find in the list of properties, including the image property.

Yes, KOL implements the API-supported ability to display some image (icon) instead of text on a

button. Although, for me, the text as an image on the button is cheaper in terms of the size of

the code.

174

304

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Switches (Checkbox, Radiobox)

5.11 Switches (Checkbox, Radiobox)

Checkboxes and radio boxes in Windows are considered a kind of button. The TControl object

has three main flavors of switches.

Their constructors:

NewCheckBox(Parent, s) - creates a switch window object with two states, immediately

setting a title for it;

NewCheckBox3State(Parent, s) - creates a window switch with three states (checked,

unchecked and in an undefined state - it is painted over in dark gray in the standard color

scheme);

NewRadioBox(Parent, s) - creates a radio switch, i.e. if the parent has multiple such radio

switches (or radio buttons), then only one of them can be "checked" (checked). The

essential difference from the TRadioBox component in the VCL lies precisely in the way of

dividing radio buttons into groups, for which the RadioGroup property was responsible there.

Since all these radio buttons are buttons, they have all the general properties of

controls, buttons, and, in addition, several properties specific to radio buttons

are added:

Checked - reads or changes the state of the switch. To switch the radio button to the "on" state,

use the SetRadioChecked method;

SetChecked(on) - "pass-through" method for initial initialization of the switch state when it is

created;

SetRadioChecked - method exclusively for radio switch. Sets the radio button to checked =

true, while disabling the currently enabled radio toggle on the parent window (if any). In this

case, the event is triggered for both switches: for enabled and for disabled;

Check3 - the state of the three-position switch (created by the NewCheckBox3State

constructor).

In MCK, these types of controls are represented by two mirrors: TKOLCheckBox and

TKOLRadioBox. In this case, the TKOLCheckBox component has a design-time property

Auto3State, which, if set, tells MCK that the code for the triple radio button should be

generated in the form initializer.

5.12 Visual objects with a list of items

The next large group of objects are visual objects designed to represent a set of items (for

example, lines of text) that can be manipulated through the corresponding General Items []

property. These can be windows for editing multi-line text, for viewing lists of texts, images, for

presenting a line of buttons, etc.

345

345

345

305

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Visual objects with a list of items

The common set of properties, methods and events for all of these kinds of objects in TControl

include:

Count - the number of items (lines in a multi-line input field - memo or rich edit, items in the list

box, combo box and list view lists, top-level nodes in the tree view, pages in panels with tab

controls, buttons in the tool bar) ;

Items[i] - access to the text of the element with index i (does not work for all list controls, for

some of them - for example, list view - you need to use specialized properties);

ItemData[i] - access to an additional number or pointer associated with an element (not typical

for all list controls);

IndexOf(s) - returns the index of elements with the specified text, or -1 if no such element was

found;

SearchFor(s, i) - similar to the IndexOf function, finds an element containing the specified text,

but the search starts from the element with index i;

Add(s) - adds a given string to the end of the "list" (just about the peculiarities of using for

multi-line text input fields: the string must contain line termination characters # 13 # 10,

otherwise, when the next lines are added, their text will be concatenated with the last line

without moving to a new one string);

Insert(i, s) - inserts a new element with the specified text in the specified position of the "list";

Delete(i) - removes the element with index i;

Clear - clears the list of items (or text in the input field)

CurIndex - the current item in the list is also valid not for all list controls;

ItemSelected[i] - checks that the element is "selected" (typical for those list controls in which

there is the concept of "selected element" or "set of selected elements");

OnMeasureItem - an event that allows you to set the dimensions (height) of an element in your

handler. For more details, see below in the description of the controls for which this event works

(list box, combo box, list view);

OnDrawItem - the event of drawing an item, allows you to set your own procedure for the

image of a separate item in the list.

5.13 Text input fields (editbox, memo, richedit)

· Text input field constructors (edit)

· Specifics of using common properties (edit)

· Input field options (edit)

· General properties of input fields (edit)

· Empowering: direct API access (edit)

· Features of Rich Edit

· Mirrored input field classes (edit)

306

306

307

308

309

309

314

306

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Text input fields (editbox, memo, richedit)

5.13.1 Text input field constructors (edit)

The first group of such window objects, which can be considered as consisting of a certain set of

elements (lines of text), includes input fields.

They are created by constructors:

NewEditBox(Parent, options) - Creates a single-line or multi-line input field object. A

single-line input field always contains one element, and most of the above properties and

methods are uncommon for it (although they work). But this field is actually a special case of a

multi-line text input field (memo) created by the same constructor (but with the eoMultiline

option in the options parameter);

NewRichEdit(Parent, options) - creates an object for editing text with advanced formatting

(rich edit, allows you to edit .rtf files);

NewRichEdit1(Parent, options) - similar to the previous one, but not the latest version of

the rich edit editor available on the system is used, but version 1 (which may be needed for

compatibility purposes, for example).

Please note that when using rich edit controls in a project, the NOT_USE_RICHEDIT conditional

compilation symbol should not be present in the project options.

5.13.2 Specifics of using common properties (edit)

The features of the above properties and methods for working with visual list objects when

working with input fields are as follows:

editable multi-line text is conditionally divided into separate elements (lines). Namely, the line

separator is a combination of # 13 # 10 characters (carriage return and line feed characters).

This, in particular, means that when using word-by-word hyphenation (eoNoHScroll option), the

line can visually be located in several lines, nevertheless, it continues to be a single "element" of

the list of lines.

The CurIndex property does not make sense for input fields, since the selection in them is not

made line by line, but character by character (a continuous piece of text can be selected,

including one that starts on one line and ends on another);

for the same reason, the ItemSelected [] property has a slightly different meaning: it checks

that the given row is in whole or in part in the selection.

To add or insert a whole line using the Add and Insert methods, the added line must be

terminated with characters # 13 # 10 (otherwise, these characters themselves are not inserted

into the text, and the line is combined with subsequent characters into one element).

Events OnMeasureItem, OnDrawItem for input fields are not applicable.

345

345

345

307

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Text input fields (editbox, memo, richedit)

5.13.3 Input field options (edit)

Input fields have a number of properties, methods and events that are specific to working with

text input fields. But first, it is still worth considering in more detail the options (the Options

property - for mirrored MCK objects, or the options parameter, when manually calling the

constructing functions) of such editing objects that are set when they are created:

eoNoHScroll - prohibits the use of the horizontal scroll bar, as a result, too long lines of text are

broken into separate lines along word boundaries;

eoNoVScroll - prohibits the use of the vertical scroll bar (as a result, the field does not allow

entering more lines than can be displayed in the text field without using vertical scrolling);

Note: The previous two properties are ignored for a single-line input field that never has scroll

bars.

eoLowerCase - all letters in the text are shown (and entered) in lower case;

eoMultiline - creates a multi-line text input field (including, it is possible to create a single-line

input field for rich edit text, if this option is omitted);

eoNoHideSel - Prevents hiding of text highlighting with color when the object window is not in

the focus of keyboard input;

eoOemConvert - allows you to display correctly the characters of the national OEM encoding

(this is the character set that was used in DOS);

eoPassword - all characters in the input field when displayed are replaced by a substitute

character assigned by the system by default or an additionally specified character. Used in non-

professional password fields;

eoReadOnly - the field is used only to display the text placed in it from the program, the user

cannot edit such text (but getting into the keyboard focus, if not prohibited, is still possible - to

select fragments of text, and, for example, copy them to the clipboard) ;

eoUpperCase - all letters in the text are shown (and entered) in upper case;

eoWantReturn - a multi-line input field will, when the <Enter> key is pressed, feed the carriage,

completing the input of the current line (in fact, the characters # 13 # 10 are inserted into the

text);

eoWantTab - when the <Tab> key is pressed, the input field will insert a tab character (with

code # 9) into the text; if this option is absent, this key is used to tab between the elements

receiving the input focus;

eoNumber - a field for entering numbers (i.e. only numbers are accepted).

308

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Text input fields (editbox, memo, richedit)

5.13.4 General properties of input fields (edit)

Now I will list the common methods, properties and events of all input fields (i.e., related mainly

to objects for editing plain text - memo, and rich text - rich edit):

Text - (same as Caption). Yes, I already mentioned this property among the most common for

all visual objects. But for the input field, it will not be superfluous to remind about the existence

of such a property that provides access to all editable and displayed text at once, returning it on

one line (and allowing you to change all the text by assigning a line to this property);

TextSize - the size of the text in bytes. For formatted text, returns the size of the text without

regard to formatting. (See also the RE_TextSize property);

SelStart - the position of the beginning of the selection area (character index in the general

array of text characters, starting from zero). If the selection is not empty, then this will be the

index of the first selected character. With an empty selection, the SelStart property still has a

value - as the current input position in the text (visualized by a blinking caret). And then it

indicates the index of the character, before which the new characters entered from the keyboard

will be typed;

SelLength - the length of the selected text fragment (I don't need to explain here why the text is

selected in general, right?);

Selection - a string property representing the current selection (you can read it to get the

selection, or assign another string to this property to replace the entire selection). For a

formatted text input field, this property represents the selected text in unformatted form; to get

a formatted selection, use the specialized RE_Text property;

ReplaceSelection(s, canundo) - allows you to replace the current selection with string s, and

additionally indicate that this operation will go to the rollback stack (i.e. if the parameter

canundo = true, then this operation can be canceled);

SelectAll - when called, makes all the text in the field selected;

DeleteLines(i1, i2) - deletes lines in the specified range;

Item2Pos(i) - for a given line index, returns the position of its first character in the text (0 is

returned for a single-line input field);

Pos2Item(i) - for a given position in the text, the index of the line to which this character

belongs is returned;

EditTabChar - "pass-through" method, which ensures the typing of a tab character in the text

when the Tab key is pressed (including for fields for which the eoWantTab option was not

specified during creation);

Ed_Transparent - allows you to make the input field of plain text (not formatted) almost

completely "transparent". Can be used to achieve special visual effects (for example, if the

parent of the input field is a gradient bar);

OnChange - this event is triggered when there is any change in the text.

Note that the OnSelChange event does not make sense for an input field and

does not fire; if you need to track changes in the carriage position and text

selection, you should process keyboard and mouse messages, as a result of

which the specified parameters change. Moreover, since these changes occur

after the event has been processed, in the handler itself, you should send a user

message to yourself using PostMsg, and catch this message;

309

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Text input fields (editbox, memo, richedit)

CanUndo - checks if the undo operation can be performed now;

EmptyUndoBuffer - clears the rollback stack (after which it becomes impossible to rollback the

changes made, and the CanUndo method returns false);

Undo - rolls back one performed change (see also RE_Redo).

5.13.5 Empowering: direct API access (edit)

In fact, the API has a much broader set of functions for working with input fields, and you can do

a lot of extra work using the Perform method on an edit object. For example, scrolling text down

one line can be done with the following call:
MyEdit.Perform (EM_SCROLL, 1, 0);

And to move the carriage to the visible area of the field:
MyEdit.Perform (EM_SCROLLCARET, 0, 0);

5.13.6 Features of Rich Edit

And now about the additional properties and methods of the text input field with formatting

(rich edit), which are much more than the properties and methods common to all edit fields.

And, first of all, I immediately draw your attention to the RE_Font property, namely, that this

property should be used to change the font parameters instead of the usual Font property.

MaxTextSize - the maximum size of the text in the input field. The default is 32767 (which is the

maximum possible for an unformatted text input field - memo). In order to allow entering

editing of large-sized texts, this property should be changed (the maximum allowable value is 4

Gigabytes, without one byte);

RE_TextSize[units] - returns the current formatted text size in the specified units of

measurement (in the units options it is even possible to specify whether to take into account the

characters # 13 # 10 at the end of lines);

RE_TextSizePrecise - returns the exact size of formatted text in characters;

RE_CharFmtArea - sets the character formatting area (current selection, current word, or all

text) that is used when formatting characters (RE_CharFormat, and many properties that control

font styles and colors). defaults to raSelection, i.e. formatting is applied to the current selection

in the text. If you change the value to raAll, then the formatting will apply to the entire content,

and in the case of the value of raWord, the changes will affect only the word to which the caret is

set (SelStart);

RE_CharFormat - the lowest level of access to character formatting properties. Allows you to

read the current formatting (this returns the structure), change this formatting (by changing the

structure fields), and assign a new value for the formatting settings to this property. It is better to

use the corresponding properties below to change individual formatting settings:

RE_Font - font settings, when reading this property, the settings for the first character in the

formatting area (RE_CharFmtArea) are returned, when changed, the new font is applied to the

entire formatting area. Sometimes it is necessary to change only one of the formatting styles in

the formatting area (for example, italic), without affecting all the others, for this you should use

the properties RE_FmtItalic, RE_FmtBold and other similar properties below.

310

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Text input fields (editbox, memo, richedit)

Note when changing the font for the rich edit control, you should be aware that

the font height for this object is set in twips, not in pixels, which is 1/20 of a point,

where point is a logical unit equal to 1/72 inch on the display screen (see the

font properties in the description of the TGraphicTool object).

RE_FmtBold - style "bold" for a font in the formatting area, in order to find out if the returned

value refers to all characters in the selection area or only to the first character, use the property:

RE_FmtBoldValid;

And similar properties for other character styles:

RE_FmtItalic and RE_FmtItalicValid for italic font style;

RE_FmtStrikeout and RE_FmtStrikeoutValid for strikethrough style;

RE_FmtUnderline and RE_FmtUnderlineValid for the underlined style, in addition, there is an

additional property for the underline:

RE_FmtUnderlineStyle - allows you to set the style of the underline (single, double, word by

word, dots, dashed, wavy, mixed dash-dot, dash-dot-dot, thickened, ...);

RE_FmtProtected and RE_FmtProtectedValid - protection of a piece of text from being

changed by the user;

RE_FmtHidden and RE_FmtHiddenValid - hiding a piece of text from the user;

RE_FmtLink and RE_FmtLinkValid - allows you to mark a part of the text as a link (URL -

Universal Resolve Link, usually used as a link to Internet pages, and to highlight email addresses);

RE_FmtFontSize and RE_FmtFontSizeValid - font height in twips (see above);

RE_FmtFontColor and RE_FmtFontColorValid - the color of the symbols;

RE_FmtAutoColor and RE_FmtAutoColorValid - specifies that the default color for symbols is

used;

RE_FmtBackColor and RE_FmtBackColorValid - background color;

RE_FmtAutoBackColor and RE_FmtAutoBackColorValid - determines that the default color for

the background is automatically used for the formatting area;

RE_FmtFontOffset and RE_FmtFontOffsetValid - the offset of the font from the baseline down

(negative values - up), as well as the font height, is set in twips;

RE_FmtFontCharset and RE_FmtFontCharsetValid - a set of font characters;

RE_FmtFontName and RE_FmtFontNameValid is the name of the font.

151

311

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Text input fields (editbox, memo, richedit)

In addition to character formatting, rich edit also has paragraph (paragraph)

formatting.

It applies (is set) to paragraphs that fall within the selection area (and is returned for the first

paragraph in the selection area). Here the phrase "in the selection area" means even a partial hit

of the paragraph in the selection area, including in the case when there is no selection - to the

paragraph in which the input caret position is located.

RE_ParaFmt - similar to RE_CharFormat, provides low-level access to paragraph formatting

parameters: the structure should be retrieved, modified and reassigned to this property to

change the paragraph formatting parameters. Other paragraph formatting properties, when

changed, affect only the corresponding formatting style, without affecting other styles;

RE_TextAlign - text alignment (left, right, center, or width). Justification is performed and is

preserved in the text, but, unfortunately, it cannot be displayed by the rich edit window itself, i.e.

to see that the text in the paragraph is indeed aligned along the edges, you can only save this

text in an rtf file, and load it for viewing in a word processor like MS Word or Write. Similar to

the character formatting properties, there is also a corresponding validation property:

RE_TextAlignValid, which indicates that this formatting takes place for all paragraphs that fall

into the selection area, and not only for the first paragraph;

RE_Numbering - sets the use of paragraph numbering, see also properties RE_NumStyle and

RE_NumStart;

RE_NumStyle - sets the numbering style (no numbering, unnumbered list, Arabic numerals 0, 1,

2, ..., letters a, b, c, ...; letters A, B, C, Roman numerals i, ii, iii, iv , ..., and uppercase roman

numerals I, II, III, IV, ...);

RE_NumStart - sets the initial number for numbering (for letter numbering, the number 1

corresponds to the letter A or a);

RE_NumBrackets - sets the separator between the numbering sign and the paragraph text

(brackets on the right: 1), 2) ..., brackets on both sides (1), (2), ..., point on the right 1., 2., ..., and a

regular space);

RE_NumTab - width of the field reserved for the number (if the field is too narrow, the number

is not displayed);

And all these numbering properties can be checked with the RE_NumberingValid property to

ensure that the numbering is the same for all paragraphs in the selected area;

RE_Level - nesting level (read-only);

RE_SpaceBefore and RE_SpaceBeforeValid - the space (vertically) before the paragraph;

RE_SpaceAfter and RE_SpaceAfterValid - the space after the paragraph;

RE_LineSpacing - interline skip within a paragraph;

RE_SpacingRule - rule (units of measurement?) for the RE_LineSpacing property, no other

information;

RE_LineSpacingValid - checks that the properties RE_LineSpacing and RE_SpacingRule are the

same for all paragraphs in the selection area;

RE_Indent and RE_IndentValid - left indent for text in a paragraph;

RE_StartIndent and RE_StartIndentValid - indentation for the first displayed line of text in a

paragraph ("red line");

RE_RightIndent and RE_RightIndentValid - indent from the right edge of the sheet for the text

in the paragraph;

312

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Text input fields (editbox, memo, richedit)

RE_TabCount - the number of tab stops in the RE_Tabs array;

RE_Tabs[i] - tab stops for text;

RE_TabsValid - checks that the properties RE_TabCount and RE_Tabs are the same for all

selected paragraphs;

This completes the list of formatting properties, although it is not complete yet. If you need

table formatting, you can see the corresponding properties in the TControl help , or by

looking at the source code in KOL.pas.

It would be better to pay more attention to other properties with the RE_ prefix:

RE_FmtStandard - calling this method attaches an additional handler for pressing the keyboard,

which provides the ability to format text using control keys. For example: ctrl + B - turn bold on

and off, ctrl + I - italic, ctrl + U - underlines, ctrl + O - strikethrough, ctrl + L - left alignment, ctrl

+ R - right align, ctrl + E - align center, ctrl + J - edge alignment, ctrl + N - numbering style

selection, ctrl + '+' - font increase, ctrl + '-' - font decrease, etc .;

RE_AutoKeyboard - this property controls the automatic switching of the keyboard layout when

the caret enters the text written in the corresponding language (moreover, if this property is

initially enabled for rich edit windows in Windows9x, then it is disabled in Windows NT);

Note: There is also an additional design-time property RE_AutoKeybdSet for the MCK mirror

TKOLRichEdit, which controls whether code should be generated to set the RE_AutoKeyboard

property to ensure the same behavior of the RE_AutoKeyboard property on all operating

systems. Or, on the contrary, you should not create such code, and then such behavior will be

determined by the peculiarities of the OS version.

RE_OverwriteMode - turns on the "in place" recording mode, in which, from the usual "insert"

mode, the characters typed on the keyboard are not inserted into the carriage position, but

replace the characters after the carriage (by default, this mode is automatically enabled when

you press the Insert key on keyboard when the rich edit element has input focus);

OnRE_InsOvrMode_Change - this event occurs when changing the mode from "Insert - Insert"

to "Replace - Overwrite" and vice versa;

RE_DisableOverwriteChange - allows you to prohibit changing the above indicated mode

(however, the OnRE_InsOvrMode_Change event still continues to fire on pressing the Insert

key, if assigned);

RE_LoadFromStream(strm, i, fmt, selonly) - loads text in fmt format of length i characters

from the strm stream, replacing the entire text or selection, depending on the selonly

parameter;

RE_SaveToStream(strm, fmt, selonly) - saves all text or only the selection in the specified data

stream;

RE_LoadFromFile(s, fmt, selonly) - loads text from a file (the whole file is loaded, so there is no

length parameter, as opposed to the RE_LoadFromStream method);

RE_SaveToFile(s, fmt, selonly) - saves the text (all or only the selected portion of the text) from

rich edit to a file;

OnProgress - this event fires regularly when saving or loading text from a rich edit window

using the RE_LoadFromStream, RE_LoadFromFile, RE_SaveToFile and RE_SaveToStream

methods;

203

313

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Text input fields (editbox, memo, richedit)

RE_Text[fmt, selonly]- allows you to access the entire text or only the selected part of the text

in a rich edit control as one line. The fmt parameter specifies how to receive a string when

reading, and when writing, tells how to interpret the assigned string (plain text without

formatting, text with formatting, and other types - see the description in the code or automatic

help for a list of all different types of representation). If this method does not work, during

debugging, you can use the property

RE_Error - contains the error code (returned by the OnProgress handler);

RE_Append(s, CanUndo) - adds the string s to the end of the text, allows, if the value CanUndo

= true, add this change to the rollback stack, which allows you to later undo this change;

RE_InsertRTF(s)- inserts string s, assuming it is the internal representation of rtf-formatted text.

This method can be useful for quick insertion of pre-prepared formatted fragments of text (for

example, when generating rtf documents programmatically);

RE_HideSelection(b) - allows to hide or show selection in rich edit control;

RE_SearchText(s, case, word, fwd, i1, i2) - performs a search for the text specified by string s

in the region from position i1 to i2 (must be rearranged to search "back"), using additional

search parameters: case - take into account the case of letters when comparing; word - search

only whole words; fwd - search forward. Note: already in the Windows XP operating system, the

rich edit library version 5.0 is used by default, for which this method does not work if the project

is compiled without the UNICODE_CTRLS option. In this case, you should use the

RE_WSearchText method, which transfers the string in Unicode;

RE_WSearchText(s, case, word, fwd, i1, i2) - similar to the previous method, but accepts a

Unicode string (cannot be used for this reason in Windows9x);

RE_AutoURLDetect - this property determines the need for automatic recognition of Internet

addresses and e-mail addresses in the text;

RE_URL - the last URL "visited" by the mouse cursor. Can be parsed by the OnRE_OverURL and

OnRE_URLClick event handlers;

OnRE_OverURL - an event that is triggered when the mouse cursor is over an automatically

determined URL, i.e. the address of the WEB-page on the Internet, or above the email address.

To get the URL itself, an event handler can read the RE_URL property;

OnRE_URLClick - an event that occurs when the mouse button is clicked while the mouse cursor

is over a URL. The handler can also read the RE_URL value to get the clicked address;

RE_NoOLEDragDrop - this method prohibits the use of the built-in rich edit (and always

available without calling this method) ability to use drag-n-drop to drag text fragments between

windows (including between windows of different applications);

RE_BottomLess - this "end-to-end" method sets the style to "bottomless" for the control, which

allows it to scroll down outside the text boundlessly;

RE_Transparent - this property allows you to make rich edit partially

"transparent" (performance is not guaranteed for all cases!);

RE_Redo - allows you to return a "rollback" of a number of recent operations. Unlike the usual

control for editing unformatted text, rich edit remembers all the operations performed on the

stack, and allows you to roll them back using the Undo method (and not just the last operation),

and it is also possible for it to perform rollbacks back.

Additionally, I note that the set of visual extensions contains a special extension KOLOLERE2 (by

Alexander Shakhaylo), which provides the ability to work with rich edit interface extensions. In

314

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Text input fields (editbox, memo, richedit)

particular, it allows you to insert images, tables and other OLE-objects into the text of "rich" input

fields.

5.13.7 Mirrored input field classes (edit)

There are three mirror components in the Mirror Classes Kit for editing controls:

· TKOLEditBox - one-line input field (created at runtime by the NewEditBox constructor

without eoMultiline in the options);

· TKOLMemo - multi-line unformatted text input field (NewEditBox with the eoMultiline

option);

· TKOLRichEdit - multi-line or one-line formatted text input field (NewRichEdit).

5.14 List of Strings (Listbox)

This kind of window object allows you to display a list of strings, which are handled exactly as

with a list of elements. In particular, selection is performed exactly element by element

(moreover, if multiple selection is allowed, then arbitrary row elements can be selected, not

necessarily following one after another. Lines in such a list are never wrapped, and if they are not

included in the width of the client part control windows are displayed truncated (if you do not

prohibit horizontal scrolling, then by scrolling it is possible to read the entire line).

Constructor:

NewListBox(Parent, options) - creates an object of type TControl, as usual, returning a

pointer to it of type PControl. In the options, you can set the behavior and appearance for the

created list:

loNoHideScroll - do not hide the selection when the window is not in focus;

loNoExtendSel - do not allow the selection of arbitrary elements, even with the loMultiSelect

option (for example, by clicking the mouse while holding down <Ctrl>);

loMultiColumn - use several columns for display (to separate columns, the tabulation symbol #

9 is used in the text of elements);

loMultiSelect - multiple lines are allowed;

loNoIntegralHeight - when this option is enabled, any size of the window in height is allowed,

and not only such that an integer number of lines can fit into the client part of the window;

loNoSel - does not allow line selection at all;

loSort - the list is always sorted;

loTabstops - uses tab stops to set the width of each of the columns in a multi-column list;

loNoStrings - the list is not intended for storing strings;

loNoData - a virtual list, in which the data is not stored or displayed by the window itself, but is

provided by the OnDrawItem event handler. The loOwnerDrawFixed option must also be

present in this case. The programmer must in his code provide storage and display of items for

345

345

345

346

315

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
List of Strings (Listbox)

the virtual list, the window in this case provides only scrolling, selection of items, keyboard and

other functionality. Working with virtual lists is usually speed efficient, it is recommended to use

this mechanism for large lists (over 1000 items);

loOwnerDrawFixed - the list is drawn by its own OnDrawItem handler, all lines in the list have

the same height (if the OnMeasureItem event is present, it is called once to set the height of all

lines). Note: the presence of the OnDrawItem event handler does not yet provide the ability to

programmatically render list items: it is required that the loOwnerDrawFixed or

loOwnerDrawVariable option be specified when creating an object;

loOwnerDrawVariable - similar to the previous one, but if there is an OnMeasureItem event, it

is called for each row to determine its height.

Among the properties, methods and events common to all visual objects with

lists, only a few specific features of properties should be noted:

SelStart - index of the first selected element (may differ from CurIndex - the current element in

focus);

SelLength - the number of selected elements (including in the case when the selected elements

are not always adjacent);

OnChange - the event is triggered when the set of selected items in the list changes. Same as

OnSelChange for listbox;

OnSelChange - fires when the selection changes, like OnChange.

LVItemHeight- this property is common for list view (general list) and list box (simple list). It

allows you to set the height of an element, which is accomplished by adding a window message

handler WM_MEASUREITEM.

There is also a special method for use only in lists (also in combo boxes, see the

next chapter):

AddDirList(s, attrs)- adds a list of files, subdirectories, from the specified path (the path must

also contain a file mask, for example, 'C: \ Temp \ *. txt'). Directory names are appended in

square brackets.

There is a TKOLListBox mirror for this control in MCK. Among other properties of this

component, it should be noted that there is a design-time property Items, by editing which it is

possible to prepare a list of items that will be added immediately after the creation of the object

in the form initialization code.

316

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Combobox

5.15 Combobox

This window object combines two entities into one: a one-line text box, and the above list of

strings. Very often this visual element is also called a "drop-down list", but this is wrong. Now

this object is rarely used in the mode when the combo box is exactly the combo box, and the

input field with the list is displayed at the same time (that is, the list seems to be "dropped out"

forever and not hidden).

Most often, combo lists are still made drop-down (due to space saving on the form, probably).

But the "simple" combo box mode, when the list is always displayed, still exists and can be used

in applications.

It goes without saying that only one item can be selected in a combo box at a time. When you

select (select) an item from the list, its text is copied to the input field. To add new elements, you

need to call the Add and Insert methods in your code (the elements themselves are never

automatically added to the list, including when they are entered into the input field, when it can

be edited).

One small (but not insignificant) detail. An object of this type (when it is just a drop-down list)

should not try to "align" (Align) so that its height tries to automatically adjust to the parent's

height (or the height remaining on the parent window). That is, the styles caLeft, caRight, and

caClient are undesirable. The problem might be that there will be a conflict between the system

and the alignment code. In the worst case, the application will freeze trying to align an object

that refuses to change its height, in the best case, the change in height will simply be rejected.

The ways I know of to change the height of the input field for the combi-list is to change the

font in it, or to use the OnMeasureItem event and the coOwnerDrawVariable style (see below).

There is a little more to know about the combo box. Unlike the vast majority of other window

objects, a combo box does not allow you to dynamically change its parent (i.e. the window it is

on). You can't just take and assign another object as Parent. The combined list receives a parent

once, and will not be able to leave him for another until his death. (Generally speaking, changing

the parent for a control dynamically is difficult to call a frequently requested feature, but you

never know what cases happen).

317

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Combobox

Constructor:

NewComboBox(Parent, Options) ; Combi-list options are largely correlated with simple list

options, but there are also special ones:

coReadOnly - read only, refers to the input field, prohibits entering text here (an element can

only be selected from the available list);

coNoHScroll - horizontal scrolling is prohibited, the option refers to the list of elements (if there

are elements with too wide text, the text will be cut off, and it will never be possible to read it to

the end if the user cannot dynamically increase the width of the list);

coAlwaysVScroll - always show the vertical scroll bar (even if the number of elements is small

enough to show them all without using scrolling);

coLowerCase - the text both in the input field and in the list is displayed in lower case;

coNoIntegralHeight - similar to loNoIntegralHeight for a simple list object, refers to a list;

coOemConvert - for OEM-text (i.e. for text in DOS encoding), conversion to ANSI code is

performed;

coSort - the list is always sorted;

coUpperCase - the text is displayed and entered in upper case;

coOwnerDrawFixed and coOwnerDrawVariable - similar to the corresponding options for a

simple list, tell the system that the contents of the list will be drawn using an additionally

assigned procedure (OnDrawItem event);

coSimple - the style of a "simple" list, in which the list is not drop-down, but constantly lies on

the form directly below the input field, forming a single whole with it.

Properties and methods SelStart, SelLength, CurIndex, Count, Items [], IndexOf, SearchFor,

ItemSelected [], ItemData [] - refer specifically to the list part of the combined control. The

input field has a Text property (same as Caption). If you need to work with text selection in the

input field, you should use the Perform method with the corresponding CB_XXXX window

messages.

Properties common to the entire combo box:

OnDropDown - this event is triggered before the list is dropped by pressing the F4 button, the

Alt + <down arrow> key combination, or by clicking on the button with a triangle to the right of

the input field, - for a drop-down combo box. In the handler of this event, it is possible, among

other things, even to organize a change in the contents of the list - since it is not yet displayed

on the screen, but you should not do that - for the reason that this may take some time, and it is

better not to keep the user waiting for a long time, after every mouse click or keystroke;

OnCloseUp - this event is triggered when the drop-down list is closed - for any reason (an

element is selected, the window has lost focus, the <Escape> key was pressed, etc.);

DroppedWidth - refers to the drop-down list, allows you to set a different width for it than for

the entire window (in pixels);

OnSelChange - the same event as for a simple list, fixes the change of the selected item (with

the difference that the combo box does not allow multiple selection, and only one item can be

selected - the one that is currently displayed in the text input field);

346

318

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Combobox

OnChange - the event of changing the text in the input field, including triggered when the text

has changed as a result of selecting another element in the combi-control list part;

AddDirList(s, attrs) - as well as for the list box-list, allows to add a list of files and subdirectories

of the specified directory.

In MCK, the combo box is represented by the mirrored component TKOLComboBox. Similar to

TKOLListBox, the Combobox mirror also has a design-time Items property that allows you to

edit the list of strings to initialize the control.

5.16 General List (List View)

Starting with Windows 95 and NT 3.51, the so-called common controls ("common" window

controls, or controls) have been added to the main set of windowing classes in Microsoft

operating systems. Among them there is also a window for viewing lists of arbitrary elements,

texts and images - list view. In the KOL library, all "common" controls are also implemented

inside the TControl object type. Moreover, in many cases the polymorphism of methods,

properties and events is preserved, so that in terms of the external interface for the

programmer, the "general" controls practically do not differ from the original window objects

(the so-called GUI windows, GUI - Graphic User Interface, or graphical user interface) ...

Shared List Constructor:

NewListView(Parent, style, options, IL_normal, IL_small, IL_state);

The constructor immediately sets the style (lvsIcon - icons, lvsSmallIcon - small icons, lvsList - list,

lvsDetail - detailed, lvsDetailNoHeader - detailed without a header), lists of images (IL_normal -

for the "icon display" style, IL_small - - to store the "state" icons displayed in a separate column

in the lvsDetail and lvsDetailNoHeader styles; nil can be passed in place of any lists if the list is

not used), as well as options:

lvoIconLeft - in the lvsIcon, lvsSmallIcon modes, place the icon to the left of the text (and not

above the text, as by default);

lvoAutoArrange - automatic ordering of items in the lvsIcon and lvsSmallIcon view modes;

lvoButton - icons are displayed as buttons (for lvsIcon view mode);

lvoEditLabel - editing of the text of labels is allowed (the first column of the element);

lvoNoLabelWrap - the text is always displayed in one line (for the lvsIcon view mode);

lvoNoScroll - no scrolling in the window;

lvoNoSortHeader - do not try to sort items when you click on the column header button;

lvoHideSel - hide selection when the window is not in focus;

lvoMultiselect - allows multiple selection;

lvoSortAscending - Sort Ascending;

346

319

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
General List (List View)

lvoSortDescending - sorting in descending order (if neither ascending nor descending sort is

specified, then automatic sorting is not performed);

lvoGridLines - a grid of rulers between columns and rows;

lvoSubItemImages - columns can contain their own icons;

lvoCheckBoxes - system switches are used as images;

lvoTrackSelect - tracking the mouse cursor, and additional visual effects when the cursor

crosses the elements;

lvoHeaderDragDrop - it is allowed to grab and drag column headers (lvsDetail mode),

changing the display order columns;

lvoRowSelect - the entire line is selected, with all columns;

lvoOneClickActivate - single mouse click activates the element;

lvoTwoClickActivate - double click of the mouse activates the element;

lvoFlatsb - flat scroll bars;

lvoRegional - a special "transparency" mode, in which all client space, except for the elements

themselves and their icons, is excluded from the window region;

lvoInfoTip - automatically create and display a window, which reflects the entire text of the

column under the mouse cursor, if this text is not fully visible in the column itself;

lvoUnderlineHot - underline active elements (under the mouse cursor);

lvoMultiWorkares - use multiple working areas in the window (for viewing and automatic

ordering in lvsIcon mode);

lvoOwnerData - the list is virtual, i.e. initially does not store any data itself, but in the OnLVData

event handler receives their custom code;

lvoOwnerDrawFixed - a list of elements of the same height, displayed by the custom

OnDrawItem handler (this style should not be used if the OnLVCustomDraw event is used).

At runtime, the view style can be changed (or obtained) by the LVStyle property. Moreover, it is

possible to change any options of the general list dynamically using the properties of

LVOptions.

Regarding the lvsDetail and lvsDetailNoHeader viewing styles, it should be noted

that the text and images of list items in these modes are displayed in columns.

But you need to create columns with your own code (or use the column editor at

the development stage). If this is not done, the list box will remain empty, even if

there are items in it!

For a general list, including those with multiple selection, including for the case when the

selected elements are not adjacent, the SelLength property continues to work - it returns the

number of selected elements. But in code it is better to use the LVSelCount property.

As usual, for list controls, the Count property also works (there is a synonym for it - the LVCount

property), but for a virtual list this property can be set by telling the object window how many

elements there are (shown) in the list.

Note. The effect of the "erroneous" appearance of empty (inaccessible to the user)

lines before the very first line of the virtual list is known, if at the moment of

changing the number of elements the scroll bar was not in the top position

320

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
General List (List View)

(lvsDetail and lvsDetailNoHeader modes). A completely similar effect can be

obtained for the virtual list TListView and in the VCL. You can avoid the

appearance of such empty lines if, before changing the Count property, you put

the object in lvsList view mode (for example), set the Count value to 0, and then

return the image to lvsDetail or lvsDetailNoHeader mode; this problem is solved

in a similar way for VCL applications. At least in my applications, this was the

way to fix this failure.

The OnMeasureItem event (see the Set_LVItemHeight method) can be used if the

lvoOwnerDrawFixed style is present in order to programmatically set the height of an item if the

system's default height is not satisfactory. Personally, I often use another method: assign an

object a list of images (in accordance with the view mode - a list for large or small icons,

depending on the view modes used). The size (height) of the icon in such a list of images also

uniquely determines the height of the elements, as long as it is larger than the height of the font

used (if the font is larger, then the height of the element is set by the system so that the text fits

completely in height). If the list of images itself is not used, it is not necessary to fill it with

anything. An empty list is enough to set the required element height.

As with other list controls, the Clear method continues to work (perhaps the most polymorphic

method for all kinds of window objects).

The general list is characterized by the property SetUnicode(b)- puts the object window into

the mode of processing Unicode strings. To provide the ability to work with Unicode strings in

list items, you must also add the conditional compilation symbol UNICODE_CTRLS * to the

project options;

5.16.1 List Views

Additional properties of common controls, which can be the same as the general list view, are

inherent in the tree view, tool bar, tab control, are:

ImageListSmall - allows you to set a "list of icons" object for the general list (for the lvsDetail,

lvsDetailNoHeader, lvsList and lvsIconSmall view modes). Among other things, this property

allows you to change this object dynamically at runtime.

ImageListNormal - for the general list, sets the list of icons for the lvsIcon mode;

ImageListState - a list of images for the states of elements. An icon from this list is displayed in

a separate column (space for the column is reserved if there is a non-empty ImageListState

assigned);

Next, let's look at some of the special properties of the general list.

5.16.2 Column management

Column management (list view in lvsDetail, lvsDetailNoHeader display modes)

LVColCount - the number of columns;

321

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
General List (List View)

LVColAdd(s, textalign, i)- adds a column, setting the text alignment (left, right, center) and

width for it. For automatic width control, pass a negative number as the width;

LVColAddW(s, textalign, i) - similar to the previous method, but working with a Unicode string;

LVColInsert(i, s, textalign, i1) and LVColInsertW (i, s, textalign, i1) - inserts a column at

position i in the list of columns;

LVColDelete(i) - deletes the column with index i;

LVColWidth[i] - column width property;

LVColText[i] and LVColTextW [i] - column heading;

LVColAlign[i] - text alignment in the column;

LVColImage[i]- image (pictogram) for the column heading. If a number (greater than or equal

to zero) is assigned, then the icon with that index from ImageListSmall is used;

LVColOrder[i]- the order of the columns does not have to coincide with the visual order of their

display in the general list. This property sets the visual order of the column;

OnColumnClick - an event that is triggered when the mouse is clicked on the column header

(lvsDetail view mode);

To analyze which mouse button was pressed in the OnColumnClick event on the header of the

general list, you can use the property:

RightClick - returns true if the right mouse button was pressed.

5.16.3 Working with items and selection

LVCurItem - should be used to determine the index of the "current" element. I have put in

quotation marks the word "current", since with this concept in relation to the general list,

different interpretations may appear. The fact is that to provide an opportunity to work with the

general list not only with the help of the mouse (but also the keyboard), the concepts of

"selected items" and "item in focus" are different for it. Just as in the VCL, I decided to use the

word "current" to mean the "first selected" item in the list. Probably because when the user asks

for any actions to be performed with respect to individual list items, it is most often the

"selected" items that are meant. The element in focus is primarily used to to be able to move

between list items using the arrows on the keyboard, and highlight the desired items by pressing

the appropriate keys. (However, there is a special property to get and work with it, see

LVFocusItem below).

If the selection contains no elements, LVCurItemreturns the number -1. The same value should

be assigned to this property to deselect and bring the list into a state in which there are no

selected items in the list. Assigning a non-negative value for a list with multiple selection of

elements adds an element with such an index to the set of selected elements, for lists in which

only one selected element is allowed, this one element is selected, and then the selection is

unselected;

LVFocusItem - the index of the element in the keyboard focus;

LVNextItem(i, attrs) - returns the index of the next element after i, which has the necessary

attributes (they can set the search direction, as well as a combination of attributes LVNI_CUT -

marked for cutting, LVNI_DROPHILIGHTED - highlighted for "dropping" objects dragged by

the mouse on it, LVNI_FOCUSED - is in the input focus, LVNI_SELECTED - dedicated;

LVNextSelected(i) - finds the next selected (after index i, where i can be set to -1 to start the

search from the beginning of the list);

LVSelectAll - a method for selecting all items in the list;

322

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
General List (List View)

LVSelCount - returns the number of selected items in the list (the general property SelLength

does the same);

OnLVStateChange - an event that is triggered when the state of the elements changes (the

element is selected, in focus, etc.). The event handler is called for each element in which the

state changes, or when the state of several elements changes simultaneously - once for the

entire group of elements. In order, for example, to perform some actions only when a certain

element is selected, the condition should be checked in the handler:

if (OldState and lvisSelect = 0) and (NewState and lvisSelect <> 0) then ...

5.16.4 Adding and removing items

LVAdd(s, ii, state, sii, oii, data) - "universal" addition of an item (it is recommended to use

LVItemAdd, see below);

LVInsert(i, s, ii, state, sii, oii, data) - similar to LVAdd, inserts an item at the position with index

i (I also recommend using the LVItemInsert method that appeared later);

LVItemAdd(s) and LVItemAddW (s) - adds an element, setting only the text for it (other

properties of the element may well be set by the properties intended for this);

LVItemInsert(i, s) and LVItemInsertW (i, s) - inserts an element at the specified position;

LVDelete(i) - removes the element at index i;

OnDeleteLVItem (synonym for OnLVDelete) - this event is triggered for each deleted item (can

be used to release the resources associated with the item through the LVItemData property, for

example);

OnDeleteAllLVItems - is called before deleting all elements of the list at once. If, after returning

from the handler for this event, the OnDeleteLVItem event handler remains assigned, then it will

also be called for each deleted item;

5.16.5 Element values and their change

LVSetItem(i, j, s, ii, state, sii, oii, data)- allows you to assign specified attributes (text, icon,

state, etc.) to an element or any of its subelements (columns) - in one call. If the index of the

subelement (column) is 0, then the element itself is meant, and from index 1 the columns begin

to be numbered (and for them the data parameter is ignored);

LVItemState[i] - "state" of the element (combination of flags lvisBlend - partial coloring of the

icon, lvisHighlight - bright selection of the element, lvisFocus - focus frame around the element,

lvisSelect - the element is selected). If, during assignment, -1 is used as an index for a list with

multiple selection, then the state will change for all elements (for a list that does not allow

multiple selection, index -1 refers to the last element in the list);

LVItemIndent[i] - indent from the left edge (for lvsDetail and lvsDetailNoHeader view modes).

One corresponds to an indentation with a width equal to the width of the thumbnail in the

ImageListSmall;

LVItemImageIndex[i] - index of the thumbnail for the main image in the element (taken from

the ImageListNormal list of images for the lvsIcon view mode, and in all other modes - from the

ImageListSmall list);

LVItemStateImgIdx[i]- the index of the image in the field for the "state" icon (should not be

confused with the state of the element itself). The column with the status icon is displayed in the

323

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
General List (List View)

lvsList, lvsDetail, lvsDetailNoHeader view modes. For state icons, a specially designed list of

images ImageListState is used;

LVItemOverlayImgIdx[i] - overprint index for the image of the main icon of the element. This

property can take values from 0 to 15, and the value 0 corresponds to the absence of overlays,

and for values from 1 to 15, the corresponding "overlays" (Overlay) from the ImageListSmall

images are used;

LVItemData[i] - associates a number (or pointer) with an element;

LVItems[i, j] and LVItemsW [i, j] - properties for accessing the text of items and subelements

(columns). Column j with index 0 is the element itself, the indices of other columns start at one;

LVEditItemLabel(i)- initiates editing of the text of the specified element. Only the element itself

(column 0) can be edited in the list view-control by its own means, but not sub-elements. Of

course, lvoEditLabel must be present in the control options for this call to work (in this case, the

user usually has the opportunity to start editing the text of any element using standard Windows

tools: by pressing the F2 key, or by clicking the selected element with the mouse);

OnEndEditLVItem - this event is triggered when the user has finished editing the text of an

item, for any reason (editing canceled or completed), and regardless of how the editing was

started - by the user or programmatically, by the LVEditItemLabel method. The handler receives

a new text as a parameter, and has the ability to substitute any other text for it (including

returning the previous value);

OnLVData and OnLVDataW is a special event for the virtual list (with the lvoOwnerData option).

The handler for this event is called every time when, when drawing a list box, the system needs

to get text and images for display (virtual lists of topics differ from the usual ones that the

program stores text and images, and as a result, it becomes possible to quickly work with huge

lists of data) ;

5.16.6 Location of items

LVItemRect[i, part]- returns the rectangle occupied by the element (or its part specified by the

part parameter) in the window. If the element is not currently visible in the window, then a

rectangle with all coordinates equal to zero is returned;

LVSubItemRect[i, j]- returns the rectangle in the window occupied by a specific column of the

element (for the lvsDetail and lvsDetailNoHeader modes). If the element itself is visible in the

window, but its column j is not fully visible, then a rectangle with side borders extending beyond

the left and / or right edges of the window will be returned;

LVItemPos[i] - returns the position of the element in the window (for the lvsIcon and

lvsSmallIcon modes, this property also allows you to change the position);

LVItemAtPos(X, Y) and LVItemAtPosEx (X, Y, where) - return the index of the item located in

the given coordinates in the window (or -1 if there are no items at this position). In the

LVItemAtPosEx method, the where parameter returns exactly what part of the item ended up at

the point (X, Y): icon, text of the item itself, status icon, another column;

LVTopItem - index of the element displayed in the first line of the list (modes lvsDetail,

lvsDetailNoHeader, lvsList);

LVPerPage - the number of elements that fit into one page (lvsDetail, lvsDetailNoHeader

modes);

324

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
General List (List View)

LVMakeVisible(i, partialOK)- scrolls the window so that the element with index i is in the

scope. If the partialOK parameter is true, and the specified element is already partially visible in

the window, this call does not change anything;

5.16.7 List view

Set_LVItemHeight(i) - allows you to set the height of items (this method must be called before

creating a window for an object so that the system can call the OnMeasureItem event);

SetLVItemHeight(i) - similar to the previous one, but the "through" method;

LVItemHeight - a property that allows you not only to set the height of the item (using

Set_LVItemHeight), but later "remember" what height was set for the items;

LVTextColor - sets the color for the text font (should be used instead of changing Font.Color);

LVTextBkColor - sets the color for filling the background of the text in the elements;

OnDrawItem- called for each list item to display it (when lvoOwnerDrawFixed is present in the

options). The handler should render the entire content of the element, including subelements -

in the lvsDetail and lvsDetailNoHeader view modes;

OnLVCustomDraw - called to perform more detailed custom drawing of elements and / or

subelements (as well as the title, and parts of the client area that does not contain elements).

This handler will only work if the options lack the lvsOwnerDrawFixed style. Each time the

window is drawn, this handler is called repeatedly, for the entire list, for the entire element, and

(possibly) for each sub-element of each element, and at each of the drawing stages: prepaint

(preparation for drawing), preerase (preparation for erasing the background), erase (erasing the

background), paint (drawing the element), posterase (after erasing the background), postpaint

(after painting the element). On each of these calls, the handler must return some flags that tell

the system when else to call this handler while drawing continues. On the one hand, it is the

most flexible and powerful tool for performing any custom control of the drawing process in the

list box, on the other hand, everything is so complicated that it is rather difficult to understand all

the twists and turns at once. The set of demo projects contains a special project

(DemoLVCustomDraw) with a demonstration of the code of this handler. When writing your own

handler, you can take it as a basis.

5.16.8 Sorting and searching

LVSort - starts sorting items (this method works if Microsoft Internet Explorer 5.0 or higher is

installed in the operating system, see also LVSortData);

LVSortData - starts sorting items. Unlike the LVSort method, it works on all Windows systems

starting from Windows 95, but the OnCompareLVItems event handler does not receive the

indexes of the compared items, but the LVItemData field of these items;

On ompareLVItems - an event for comparing two items during sorting (LVSort and

LVSortData). See the LVSortData description for details on accepted parameters;

LVSortColumn(i)- performs sorting by column. Works for Windows 98 and 2000 (and above, of

course), and provides automatic sorting of strings in the order of the lexicographic order of the

text in a given column;

LVIndexOf(s) and LVIndexOfW (s) - returns the index of the first element with the specified

value of the label (element text), or -1 if no such element was found;

325

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
General List (List View)

LVSearchFor(s, i, partial) and LVSearchForW (s, i, partial) - similar to the previous methods, it

searches for an element with a specified string in the label, but allows you to specify after which

element to start the search, and whether to compare strings in full, or only partially, by the first

characters in a given search pattern;

In the MCK package for the general list, the TKOLListView mirror has a special editor for

customizing the list of columns at the design stage (called, for example, by double-clicking on

the list view rectangle on the form). But there is no editor for adding elements, you should add

elements only with your own code at runtime.

If the columns for the list view object are created during the development of the form, then by

default MCK provides an additional service: for each column, a symbolic constant with the name

of the column is created, storing its index. It is convenient to use these constants in the code

when referring to columns instead of directly specifying numeric indices. If you change the

composition or order of the columns, in this case, you do not have to change the entire code.

However, if the column names are left as they are obtained by default (Col1,

Col2, etc.), then if there are several objects of common lists on the form, there

will certainly be a name conflict due to the redefinition of constants. To avoid

this, you should either give your columns more meaningful names, or turn off

the design-time generateConstants property (which makes sense if constants are

not used anyway).

5.17 Tree View

Although the window object for the visual presentation of tree-like data structures (tree view) is

somewhat apart from other list views, I nevertheless decided to place it in the place that it

usually occupies on the component bar - after the general list view.

I note right away that the performance of the system tree view when working with a large

number of elements leaves much to be desired. In addition, there is a system limit on the

maximum number of nodes in a tree (65536). As more nodes are added, the window cannot

even show the scroll bars, and tree viewing becomes problematic.

326

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Tree View

There are a number of recommendations (in terms of speed optimization) for programmers

who use this visual element in their interfaces. Namely:

· avoid loading the whole tree. Nodes should be loaded as needed, when plowing up their

parents;

· when constructing tree-organized data, one should prevent each individual node from

containing too many slave nodes. Unfortunately, this very recommendation is rarely

enforceable: the data is usually organized not by the programmer, but by the user. Example:

file structure on disk.

· do not use this object for viewing trees, if you need a really high speed of work (or the total

number of nodes cannot be limited to 65536). It is quite possible to display data in the form of

a tree using the same general list from the previous chapter. This work can be done especially

efficiently if you use a shared list in virtual list mode. At the same time, node data can be

stored in memory using a simple TTree object (described above, in the section on simple,

non-visual objects).

Nevertheless, a specially designed object for visual work with trees works well if the first two of

these requirements are met, or in the case of small trees. Constructor:

NewTreeView(Parent, Options, IL_Normal, IL_State);

The following set of flags can be specified in the options:

tvoNoLines - do not show lines connecting nodes in the tree;

tvoLinesRoot - do not show lines for top-level nodes;

tvoNoButtons - do not show the buttons ("+" and "-") used to expand and collapse nodes;

tvoEditLabels - allows you to edit the text of nodes "in place" (F2 key or one more left-click

when the mouse cursor is positioned on the text of the node;

tvoHideSel - hide the selection of the current node when the tree is not in the focus of

keyboard input;

tvoDragDrop - automatically start the operation of "dragging" nodes with the mouse (by

pressing the mouse button on the node and moving the cursor while the mouse is held down);

tvoNoTooltips - automatic display of the full text of nodes in a pop-up window when hovering

over them with the mouse, if the text of the node does not completely fit into the client part of

the window;

tvoCheckBoxes - system switches are automatically used as status icons for nodes;

tvoTrackSelect - visual tracking of mouse movement over nodes in the tree;

tvoSingleExpand - to expand only one node in the tree (all other nodes automatically collapse

when another node is expanded, unless you clicked the mouse while pressing the Control key;

tvoInfoTip - sends a request to the object to get the text to show in the pop-up window for

each node in the tree;

tvoFullRowSelect - full line selection;

tvoNoScroll - lack of scrolling in the window;

tvoNonEvenHeight - odd height for elements (by default, the line height must be an even

number).

346

327

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Tree View

The main way to identify nodes in a tree is not their index, but node descriptors, i.e. integers that

are one-to-one assignments to elements when they are added. Unlike the TTreeView

component in the VCL, the tree view object in KOL does not create an in-memory object for

each node in the tree, similar to the VCL's TTreeNode.

The general properties of the list window objects also work for the tree:

Count - returns the number of nodes in the tree (however, if the number of nodes exceeds

65536, the system always returns 0, and cannot show the scroll bar);

ImageListNormal - a list of images for storing thumbnails of the main images for elements;

ImageListState - a list of images for storing state icons;

OnSelChange - an event that is triggered when another node becomes selected in the tree;

Properties, events, and methods that can be considered specific to the treeview object begin

with the TV prefix.

5.17.1 Properties of the whole tree

TVSelected - returns a handle to the current node in the tree. This node is also selected. If there

is no such node in the tree, then 0 is returned. By assigning a descriptor of some node to this

property, thereby it can be made current (other selected ones are no longer selected);

OnTVSelChanging - the event occurs before the node is allocated. The event handler can

cancel the selection operation by returning true, and thereby prevent the selection of any nodes

in the tree;

OnSelChange - this event is triggered to view the tree after changing the currently selected

node;

TVRightClickSelect - this property determines for the tree window whether right-clicking on an

unselected node will make it selected;

TVDropHilighted and TVDropHilited are synonyms for the same property. Return (and set) a

node that is designated (and visually rendered differently) as the target node for dropping an

object or node being "dragged" by the mouse (drag and drop operation);

TVRoot - descriptor of the first top-level node (0, only if the tree is empty);

TVFirstVisible - returns (and allows to set) the first visible node in the client side of the tree;

TVIndent - the size (in pixels) of the padding of child nodes in relation to the parent. Allows you

to set the desired value other than the default;

5.17.2 Adding and removing nodes

TVInsert(Parent, After, s) and TVInsertW (Parent, After, s) - creates a node that is a child of

Parent, in order following the After node, and sets the string s as text for it;

TVDelete(Node) - deletes the specified node (together with the node, all subordinate nodes

are automatically deleted - recursively);

OnTVDelete - an event that is triggered when each node in the tree is deleted. A handler for

this event can, for example, release memory, objects, or other resources associated with the

item being removed (TVItemData);

Clear - the same as for other visual elements, it works for viewing the tree, deleting all its nodes.

328

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Tree View

5.17.3 Properties of parent nodes

TVItemChild[Node] - returns the descriptor of the first child node for the given Node (or 0 if

the Node has no subordinates in the tree);

TVItemHasChildren[Node] is not just about checking that a Node has child nodes. It is possible

to use this property to indicate to the window that the Node node "has" child nodes, and from

that moment on, a "+" button will be displayed opposite this element, allowing you to expand

this node, even if there were no subordinate nodes in it. At the same time, at the time of

plowing, you can add these same nodes. This feature can be used to postpone the loading of

those nested nodes that are not yet required for the future, and thereby increase the speed of

the initial filling of the contents of the tree;

TVItemChildCount[Node] - returns the number of child nodes for a Node directly nested

within it;

TVItemExpanded[Node] - Determines if the node is open. By assigning the value true to this

property, you can ensure its expansion (false - closing);

TVItemExpandedOnce[Node] - returns true if the node has been expanded at least once (after

which this flag can be cleared only by deleting all child nodes);

TVExpand(Node, flags) - expands or collapses the Node, depending on the flags. You can pass

a combination of flags in the flags parameter:

· TVE_COLLAPSE - collapses the node;

· TVE_COLLAPSERESET - in addition to collapsing, removes children;

· TVE_EXPAND - opens the knot;

· TVE_TOGGLE - if the node is open, closes it, and if it is open, then it slams;

TVSort(Node) - Sorts the tree starting from the specified node. If 0 is passed as the Node

parameter, the entire tree is sorted;

5.17.4 Properties of child nodes

TVItemParent[Node] - returns the parent node for the given one;

TVItemNext[Node] is the next sibling node in the tree after Node (a child for the same parent).

Returns 0 if Node is the most recent child in the same parent;

TVItemPrevious[Node] is the previous node in the tree. Returns 0 if Node is the first top-level

node;

TVItemNextVisible[Node] - the next node displayed in the window;

TVItemPreviousVisible[Node] - the previous element displayed in the tree window;

TVItemVisible[Node] - Checks if a node is "visible", in the sense that all its parents in the tree

hierarchy are open. By setting this property to True, it is possible to ensure the "visibility" of the

node (all of its unrevealed parents are opened at the same time);

5.17.5 Node attributes: text, icons, states

TVItemText[Node] and TVItemTextW [Node] - node text;

TVItemPath(Node, s) and TVItemPathW (Node, s) - returns the "path" from the root node to

the specified Node as a concatenation of the text of all nodes on this path (strings are separated

by s);

329

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Tree View

TVItemImage[Node] - the main icon for a tree node when it is not selected (for the selected

state, another icon is used, set by the TVItemSelImg property). Use a value of -1 to be able to

set the icon in the TVN_GETDISPINFO message handler. In order to have no pictogram at all,

the value -2 should be used. When assigning a value to this property, the same value is

simultaneously assigned to the TVItemSelImg property;

TVItemSelImg[Node] - an icon for a node in its selected state;

TVItemOverlay[Node] - drawing on the main icon. A value of 0 means no overlays, values from

1 to 15 use overlay icons from the same ImageListNormal list of images where the main icons

come from (see the Overlay [] property for a list of icons);

TVItemStateImg[Node] - "state" icon, which is taken from a separately specified list of images

ImageListState;

TVItemData[Node] - number or pointer associated with a node in the tree;

TVItemBold[Node] - a special property that allows you to display the text of a node in a bold

font;

TVItemCut[Node] - a special visual effect for a node in a tree, which is usually used to display

the nodes selected for the operation of "cutting" and subsequent insertion;

TVItemDropHilighted[Node] and TVItemDropHilited [Node] are property synonyms for a

node that provide a special visual effect for a node. This is how elements in the tree are usually

depicted that are the target for the object being dropped by the mouse (drag and drop). Unlike

the TVDropHilited property, which specifies the only element in the tree intended for exactly this

operation, this property simply changes the appearance of nodes, and the number of such

nodes is not limited to a single one;

TVItemSelected[Node] - the "node is selected" property. Several nodes can be "selected" in a

tree;

5.17.6 Node geometry and drag

TVItemRect[Node, textonly] - returns the rectangle occupied by the node in the client area of

the window (all or only its text). If the node is partially visible in the window, the returned

rectangle can go beyond the bounds of the client rectangle. If the node is not visible at all, a

rectangle with all zero coordinates is returned;

TVItemAtPos(X, Y, where) - returns the handle of the node located in the client part of the

object window at the point with coordinates (X, Y). In this case, the where variable returns what

part of the given node is at this point: the main icon, the status icon, the text or part of the node

to the right of the text or to the left of the displayed part of the element;

OnTVBeginDrag - an event that is triggered when the operation of starting dragging a tree

node with the mouse is recorded;

5.17.7 Editing text

TVEditItem(Node) - programmatically starts editing the text of the node;

TVStopEdit(cancel) - programmatically terminates the editing of the node text. The cancel

parameter determines whether the edit will be canceled or completed successfully;

TVEditing - checks if the window is in the text editing mode of the current node;

330

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Tree View

OnTVBeginEdit - an event that is triggered when editing the text of a node in the tree starts, for

any reason (user or programmatically). Among other things, the handler can prohibit the ability

to edit text for individual elements in the tree by returning false;

OnTVEndEdit - event of completion of editing the text of the node. In particular, the event

handler can substitute its own text instead of the entered string;

Moreover:

SetUnicode - switches the object window to the mode of working with Unicode strings

(nevertheless, the UNICODE_CTRLS conditional compilation symbol must be present in the

project options);

In MCK, the tree is represented by the mirrored TKOLTreeView component.

5.18 Tool Bar

A visual of this type is usually used in an interface where, among the many commands available

from the menu, there are a number of the most frequently used operations that can be

conveniently performed by clicking on the icon associated with this action. For example, it is very

easy for a user to remember that an open folder icon is associated with a file open operation.

Sometimes, on the contrary, if the number of commands is too small, the toolbar can completely

replace the main menu. Usually, this is exactly the situation with secondary forms, on which their

main menu is used extremely rarely (I do not remember a case when I had to use the main

menu on additional forms in my projects).

A very convenient feature of the toolbar object is that it automatically provides floating text

prompts for each button (of course, the application developer determines the text of the

prompts). Thus, if not only the name of the action to be performed, but a combination of hot

keys by which it can be performed is placed in the text of the hint, then the tool bar also turns

into a tool for self-documenting the application, and into a tool for visual training of the user

when he is just getting acquainted with the capabilities of the program ...

Most often, the toolbars are located at the top of the window, just below the menu. This is the

most ergonomic location: if the user, choosing the action to be performed, changed his mind

and wanted to execute a command that is in the menu (but which is not among the buttons on

the ruler), then he does not need to move the mouse cursor far: the menu is very close.

But there is no special need to place the tool ruler on the upper part. Moreover, unlike the main

menu, it is possible to place an arbitrary number of tool bars in the window (as long as there is

space), arrange them not only horizontally, but also vertically, make them dynamically hidden,

etc.

331

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Tool Bar

In fact, the ruler is a panel with buttons. But one window is responsible for the image and

functioning of these buttons. (By the way, I forgot to say: if you need to have a large number of

buttons, the ruler also saves window handles, which can be useful for improving the

performance of the application and the entire operating environment). The programmer sets

only the parameters of the buttons (text, images, features of functioning), and event handlers for

mouse clicks on the buttons or on the ruler itself.

Object constructor:

NewToolbar(Parent, align, options, bitmap, buttons [], imgindexes []) - allows

directly in the object constructor to set, in addition to the parent and general options of the

ruler, also the list of buttons, i.e. names and / or tooltips for them, and a set of icons in the form

of a single bit image. The align property specifies for the toolbar whether it is automatically

aligned to the top of the parent window by its own windowing means. This alignment does not

cost anything for the size of the program. does not add generic code to the application to align

child visuals with parent visuals (as it does when using the Align property of a TControl).

There are the following options for a ruler object:

tboTextRight - the text on the buttons is located to the right of the icons, and not below, as by

default. Note that this option can affect the appearance of the ruler even if the text in the

buttons is not used at all;

tboTextBottom - the text is located under the icons;

tboFlat - flat buttons (the border appears only when you hover over the buttons with the

mouse cursor);

tboTransparent - property of "transparency" of the ruler (it is also provided by means of the

window itself, and the general transparency is not involved);

tboWrapable - the buttons are automatically transferred to the bottom line when the right

edge of the window is reached (should be used only for vertically arranged rulers, since KOL

does not provide an automatic change in the height of the ruler window when such a transfer

occurs);

tboNoDivider - prohibits drawing along the top edge of the ruler the dividing line, which the

ruler window displays by default;

tbo3DBorder - adds a pseudo-three-dimensional border around the ruler (as a result, the ruler

is deeply "depressed").

The buttons parameter is an array of strings that define for each button its type and its text - in

one line. An empty string is used as a sign of the end of the array of buttons, therefore, even if

the button does not have a caption, it must be given a text containing at least one space. Note:

In order for such buttons to display correctly in Windows 9x, the tboTextRight option must be

used. A separator button is specified by the string '-' (ie, the string for such a button contains a

single minus sign). To create dockable buttons, the text is specified as usual, but it is preceded

by the prefix character '-' or '+' (which one specifies whether the button will initially be

depressed or depressed). In order to combine the fixed buttons into groups, after the prefix sign

'+' or '-', there is a prefix exclamation mark, for example: '+! x', '-! y'. In a group, only one button

can be pressed (this is provided by the window). It is also possible to define a "drop-down"

346

332

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Tool Bar

button, which is displayed with an additional "down triangle" sub-button on the right side of the

button. The prefix character '^' is used to define the dropdown button.

In case the buttons are only for displaying icons, the text in the buttons can still be specified, in

which case it can be used to define a set of tooltips. It is also possible to specify the list of

tooltips additionally, in which case the tooltips may differ from the text assigned to the buttons

themselves.

The bitmap parameter can set a bitmap of thumbnails for some buttons. If such an image is

specified in the ruler constructor, then the width and height of the icons are taken equal to the

height of this image. To use a different width of images, you should initially pass 0, then change

the width by assigning a value to the TBBtnImgWidth property, and only then assign the image.

In this way, you can also use several images, adding them sequentially (but the width of the icons

must be the same).

Now is the time to remind about the existence of the LoadMappedBitmap functions and others

that allow, when loading an image from resources, to ensure their adaptation to the system

colors settings that take place at that moment. These functions can be used to turn a fixed light

gray color into the clBtnFace color for displaying button faces, etc. - so that the ruler does not

look like a foreign body on the desktop, if the used color scheme differs from the standard one.

Thumbnails are considered in the image following from left to right, and are numbered by

indices starting from zero. Again, the imgindexes array tells the buttons the thumbnail indices

from this bitmap. An important detail: when icons are mapped to buttons in a list of text strings,

separator buttons are not counted (they still cannot be pictured).

Moreover, if the array of image indices is less than the number of buttons defined in the buttons

array, then other buttons receive indices in ascending order. Ie, for example, it is enough to set

an array of a single element [0], which assigns the first button in the array an icon with index 0,

so that all other buttons get icons 1, 2,

When setting a bitmap image for icons, it is allowed to specify special (negative) values in place

of its descriptor: as a result, the image for buttons is taken from the system standard set of

images for toolbars. The choice of system images is not very rich, but it allows, at least for some

of the actions of the standard type, to use standard icons, giving the appearance of the

application a certain rigor, and making it easier for the user to remember new icons.

It is also possible to use not one bitmap, but a list of images. More precisely, up to three lists.

One for the normal enabled state of the buttons, one for the disabled (disabled) state, and the

third for the highlighted (hot) state. To do this, initially pass 0 as the bitmap parameter, and then

assign the thumbnail lists additionally using the Perform method and passing TB_SETIMAGELIST,

TB_SETDISABLEDIMAGELIST, TB_SETHOTIMAGELIST messages. Note: when designing in MCK

for the toolbar mirror, there are design-time properties imageListNormal, imageListDisabled,

imageListHot, which ensure the generation of the corresponding code.

Buttons on a toolbar can be identified by their numeric "identifiers" assigned to them when

buttons are added, or by indexes. When programming in MCK, there is (and is enabled by

333

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Tool Bar

default) the ability to automatically generate symbolic constants that allow you to use identifiers

assigned at the development stage to identify buttons. Because the buttons are assigned TB1

names by default. TB2, ..., then when multiple toolbars are used on a form, MCK generates code

that specifies the values for such constants more than once. Such code, from the point of view of

the compiler, is erroneous and cannot be compiled. To avoid such a situation, you should either

rename the buttons (TBOpen, TBSave, ... - and then refer to them in this way),

Now I will list the methods, properties and events of the toolbar:

5.18.1 General properties, methods, events

OnClick - the event of a mouse click on the ruler, including any of its buttons. There is a

synonym for this event, OnTBClick;

RightClick - this property can be interrogated in the OnClick event handler in order to

distinguish between right-clicking and left-clicking;

CurIndex - can be used to clarify which button was pressed in the handler of the general event

OnClick or OnDropDown - for the entire ruler. If the click happened "past" all the buttons on the

ruler itself, then the CurIndex property returns -1. The use of a common event saves some code

size, since there is no need to draw up a separate procedure for processing each button, and

when initializing the ruler, it is enough to assign only one event handler. But it is also possible to

assign separate click handlers for each button on the ruler;

TBCurItem - similar to CurIndex, but returns a numeric handle, not the index of the pressed

button;

Count - returns the number of buttons, similar to TBButtonCount (property synonym);

OnDropDown - This event is triggered when the user clicks on a button created as a

"dropdown" with a '^' prefix in the text. What exactly will drop out in this case, and from what

position on the screen, is entirely determined by your code;

IsButton - returns true for the ruler object (although, of course, it is not a button, but the return

value is used for internal purposes, to support mnemonics, i.e. keystrokes from the keyboard

using the shortcut Alt + <letter>);

SupportMnemonics - calling this method provides a code for the ruler that provides automatic

triggering of buttons by pressing Alt + <letter> mnemonic key combinations, where letter is a

character from the button text, preceded by the '&' prefix. This method can be called for the

entire form to provide mnemonics for all window objects in the form (menus, buttons). Or, this

method can be called on the Applet object to provide this functionality for all forms in the

application in a single call;

TBAutoSizeButtons- if set (TRUE, this value is used by default - unless there is a

TBBUTTONS_DFLT_NOAUTOSIZE symbol in the project options), then the size of the buttons is

adjusted to the size of the text and icons individually. If the value is FALSE, all buttons are the

same size.

Note that if this parameter is different from the default, then you should change it

before creating the buttons. For example, initially set empty arrays buttons and

imgindexes in the parameters of the NewToolbar constructor , then change this

property for the created button bar, and only after that add buttons with the

TBAddButtons functions.

364

334

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Tool Bar

TBButtonsMinWidth - the minimum width of the buttons;

TBButtonsMaxWidth- the maximum width of the buttons. These two parameters must also be

changed before buttons are added;

TBRows - allows you to set the number of lines that will be used to wrap buttons to the next line

if the ruler is not wide enough.

5.18.2 Setting up the ruler

TBAddButtons(buttons, imgindexes)- adds buttons to the ruler in the same way as in the ruler

constructor. It is possible to add buttons with several different calls to this method and the

TBInsertButtons method;

TBInsertButtons(i, bitmap, imgindexes) - inserts the specified buttons at position i;

TBDeleteButton(btnID) - removes the button (by its numeric "identifier");

TBDeleteBtnByIdx(i) - removes the button by index;

Clear - removes all created buttons from the ruler;

TBSetTooltips(btnID, tooltips) - sets the pop-up text of tooltips for buttons starting with btnID;

TBBtnImgWidth - the width of the thumbnail for the button in the (first) image added in the

TBAddBitmap method. To use this property, the number 0 should be passed as the bitmap

parameter in the ruler constructor, and the image should be added after changing the value of

this property using the TBAddBitmap method. This property should not be used if standard

images are used for at least some of the buttons (in this case, the icons are always square, 16x16

or 32x32 pixels in size);

TBAddBitmap(bitmap)- adds a bitmap to the line of pictograms for toolbar buttons. On first

addition, if the TBBtnImgWidth property has not changed, the height of the entire image is used

as the width of each thumbnail. With subsequent additions, the width of the icons can no longer

be changed, and if the parameters of the new images (height) differ, the height of the first

bitmap added (by this method, or in the ruler constructor) is still used.

In addition, this method can be used to "add" system images to the rulers by using the reserved

numeric values in the bitmap parameter (-1 - standard 16x16 small icons, -2 - standard 32x32

large icons, -5 and -6 - standard small and large "view" icons, -9 and -10 are standard small and

large "history" icons).

The use of system images has a beneficial effect on the size of the application.

pictures are taken from system resources, and are not stored in the executable

module, spending 1 K byte (minimum) for each button.

TBAssignEvents(btnID, events) - assigns individual events to the ruler buttons, starting with

the button identified by the numeric btnID descriptor;

TBResetImgIdx(btnID, i) - "resets" the indexes of icons for i buttons, starting with the given

btnID;

TBItem2Index(btnID) - returns the button index by its numeric descriptor;

TBIndex2Item(i) - returns a handle to the button by its index;

TBConvertIdxArray2ID(idxVars) - "converts" indices to identifiers for the specified set of

numeric variables. You should initially assign button indices to these variables, and after calling

335

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Tool Bar

TBConvertIdxArray2ID, all of these variables can be used as indices to refer to the buttons. This

method allows you to combine the convenience of using symbolic names as button indices,

when referring to them from the program code, with the ability to dynamically change the

composition of the line. If buttons are inserted or deleted, then the correspondence between

the symbolic names of the buttons and their descriptors obtained in this way is not violated.

5.18.3 Button properties

In subsequent properties, you can successfully use both IDs and indexes to identify buttons. The

value of the parameter indicates that we are talking about an identifier and not about an index. If

it is less than 100, then it is the index that is meant. Hence the conclusion: the number of buttons

on the ruler should not exceed 100. However, this limitation does not seem excessive to me.

TBButtonEnabled[i] - button "available";

TBButtonVisible[i] - the button is visible (when you hide the button, the buttons located to the

right of it are shifted to its place);

TBButtonChecked[i] - the "depressed" button (it makes sense to use only for fixed buttons,

which were created with the prefix '-' or '+');

TBButtonMarked[i] - the button is highlighted (this property can also be set to true or false);

TBButtonPressed[i] - the button is "pressed";

TBButtonText[i] - the text of the label on the button;

TBButtonImage[i] - the index of the icon for the button;

TBButtonSeparator[i] - the button is "dividing" (in fact, a narrower dividing strip is depicted -

flat or depressed);

TBButtonRect[i] - returns the rectangle occupied by the button on the ruler;

TBButtonWidth[i] - returns (and allows to change) the width of the button;

TBButtonAtPos(X, Y) - returns the handle of the button located on the ruler at the point with

the specified coordinates (value -1 is returned if there are no buttons at this point);

TBBtnIdxAtPos(X, Y) - similar to the previous method, but returns the button index;

TBMoveButton(i, j) - moves the button with index i to position j;

5.18.4 Some features of working with the toolbar

In order to change the height of a horizontally located ruler, in OS Windows you have to change

the height of the icons, and there is no other way to control the height of this visual element.

Even if you don't use icons but want to increase the height of the ruler, create an image list with

an image width of 1 pixel (ImgWidth = 1), and the desired height, and assign it as a set of icons

for the ruler, without even adding to this picture list no picture. In the case of using MCK, it is

enough to drop the TKOLImageList component onto the form, set ImgWidth = 1 to it in the

Object Inspector, and for the TKOLToolbar mirror, assign this list of images as the main set of

icons (ImageListNormal property).

Sometimes it becomes necessary to position the ruler vertically. In this case, you can do one of

the following. Or, you must specify the number of lines in which the buttons should be placed

(and this number must be the same as the number of buttons). Alternatively, you should set the

tboWrapable option and make the ruler wide enough to wrap the buttons to the next line.

336

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Tool Bar

There is a known issue with incorrect rendering of the toolbar with the tboFlat option in

Windows XP when themes are enabled: the background of the ruler turns black. To resolve this

issue, use the design-time property FixFlatXP (it is enabled by default). When this option is

enabled, when this OS version (or higher) is detected, the tboFlat option is not enabled.

In addition, I note that the toolbar window uses window messages TB_xxxx to

control itself, which for some unknown reason appeared at the beginning of the

user message range WM_USER + n. If the form itself receives such messages in the

first place, intercepting them for its own purposes, it is quite possible that the

toolbar will not respond to some requests and commands implemented through

the same messages. (The same can apply to some other window controls in

Windows, for example - list view or tree view). So my advice is not to use the first

hundred of custom posts for your own purposes.

The TKOLToolbar component is the MCK mirror for this kind of control. It allows you to

customize the ruler at the development stage, and not rack your brains over what calls and in

what order to make the ruler looks exactly the way the developer wants it.

5.19 Tab Control

This visual control, encapsulated in the TControl type, also applies to list visual objects (its

"items" are bookmarks, along with the corresponding pages). The main purpose of this object is

to provide the presence of several "pages", or panels, with their own set of child visual objects

located in each of them, and a set of bookmarks for switching between these pages. There is

also a particular task: to ensure the presence of programmatically switchable pages, without

giving the user the opportunity to independently navigate to any of these pages. This goal is

also not difficult to achieve using this kind of window object (by hiding tabs).

Constructors:

NewTabControl(Parent, tabs, options, imglist, imgidx1) - creates a multi-page object,

immediately adding to it a number of bookmarks, specified by the composition of the lines in

the tabs array, and assigning these lines to these bookmarks as the text of the bookmarks. The

presence of the imgidx1 parameter allows you to combine the use of one list of images for

some purposes: the indexes of icons to be displayed in bookmarks are assigned starting from

the value of this parameter. Of course, image lists are optional, so it is okay to pass nil as the

imglist parameter.

function NewTabEmpty(Parent, options, imglist)

Creates new empty tab control for using metods TC_Insert (to create Pages as Panel), or

TC_InsertControl (if you want using your custom Pages).

346

346

337

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Tab Control

The following options are defined for tabbed panels:

tcoButtons - bookmarks look like buttons;

tcoFixedWidth - fixed (the same for all) bookmark width;

tcoFocusTabs - draw a frame in a bookmark;

tcoIconLeft - display the icon in the tab on the left, and the text on the right;

tcoLabelLeft - display the icon on the right, and the text on the left;

tcoMultiline - bookmarks are placed on several lines;

tcoMultiselect - multiple selection of bookmarks;

tcoFitRows -

tcoScrollOpposite -

tcoBottom - bookmarks are located at the bottom;

tcoVertical - bookmarks are located on the left (if the tcoBottom option is present, on the

right);

tcoFlat - "flat" bookmarks;

tcoHotTrack - "hot" highlighting of the bookmark under the mouse cursor;

tcoBorder - border around the entire window;

tcoOwnerDrawFixed - the OnDrawItem event handler is called to draw the contents of the

bookmarks.

Properties, methods, events:

CurIndex - index of the current bookmark;

IndexOf(s) or TC_IndexOf (s) - returns the index of the page with the specified text in the

bookmark;

SearchFor(s, i, partial) or TC_SearchFor (s, i, partial) - similar to IndexOf, but additionally

allows you to specify the index after which to start the search, and set the way to compare the

text of the element with the pattern (partial comparison of the first characters);

OnChange - this event is triggered when another bookmark becomes current

(programmatically or as a result of user actions);

ImageListNormal - access to an object that provides images of icons for display in bookmarks;

SetUnicode(b) - allows you to switch the object window to the mode of working with Unicode

strings (it is required to include the UNICODE_CTRLS conditional compilation symbol in the

project options);

Special properties characteristic of this particular type of object:

Pages[i] or TC_Pages [i] - access to object panels. For example, to create a label on the panel

with index 0, you should call:
NewLabel (Tabcontrol1.Pages [0], 'text');

TC_Insert(i, s, ii) - inserts one more bookmark (together with the panel);

TC_Delete(i) - deletes the bookmark with the specified index;

TC_Items[i] - access to the text of the i-th bookmark;

TC_Images[i] - managing the index of the icon in the bookmark;

TC_ItemRect[i] - the rectangle occupied by the bookmark in the window of the whole object;

338

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Tab Control

TC_SetPadding(cx, cy) - sets the indent from the edge of the bookmark to the text in it;

TC_TabAtPos(X, Y) - returns the index of the bookmark located in the object window at the

specified coordinates (or -1 if there are no bookmarks in this position);

TC_DisplayRect - the rectangle occupied by the client part of the current page in the object

window (in fact, for all pages this rectangle is the same, because when another page becomes

the current one, it is simply shown "in front" of all the others, obscuring them from view user). It

is this rectangle that is convenient to use in order to "crop" the edges of the object along with

the tabs at runtime, making them invisible and inaccessible to the user. For example, like this:

var Rgn: HRgn;
...
Rgn: = CreateRectRgnIndirect (Tabcontrol1.TC_DisplayRect);
SetWindowRgn (Tabcontrol1.Handle, Rgn, true);
DeleteObject (Rgn);

If at the same time. for example, place bookmarks at the bottom (tcoBottom option), then after

trimming the bookmarks, the object looks almost the same as if it were a regular panel (without

a convex or indented border). The remaining space at the bottom can be used to place (on the

other parent) some buttons. When designing in MCK, such border cropping, of course, does not

change the appearance of the object, and it is still possible to switch between bookmarks (by

double-clicking on the bookmark).

The Mirror Classes Kit has a mirror component TKOLTabControl for the bookmarked pages

object. Many beginners to work with MCK, having dropped it on the form, do not know what to

do with it (how to add bookmarks, delete or move them). I think the information below will

come in handy.

To set the initial number of bookmarks during development, or to increase this number, you

need to change the value of the Count property - in the Object Inspector. For example, enter

the number 3 to create initially three bookmarks. In order to select a certain bookmark as the

current one during the configuration of the form (design time), double-click on it (just on the

bookmark). In order to delete a bookmark, you need to make it current, select its panel, and

press the <Delete> key on the keyboard. Finally, to change the order in which the tabs are

displayed, use the TabOrder property of the panel. For the changes to take effect, you can, for

example, make a double click on the object window, in the area free of both tabs and panels.

339

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Frames (TKOLFrame)

5.20 Frames (TKOLFrame)

Frames originally emerged as a way to dynamically create multiple sets of visual objects,

grouped together, positioned in a certain way, and once customized. For example, a group of a

pair of input elements (EditBox), a checkbox (CheckBox) and a button can be combined in

one frame, after which the required number of such groups can be created on the parent scroll

box to manage many such objects. In this case, all groups will look and function the same.

It makes sense to talk about this component only in the context of the Mirror Classes Kit. A

frame during design time is a form on which other visual and non-visual components can reside.

To organize a frame, unlike a form, put a TKOLFrame component on a Delphi form instead of a

TKOLForm object.

But unlike a form, at runtime, a frame is a panel that can be created on an existing form or other

parent visual that allows children (for example, a scroll box created by calling NewScrollBox or

another panel). In this case, the function for creating a frame generated by the MCK

components actually creates a panel, and all child elements of the frame, in accordance with

what was specified at the design stage.

Accordingly, a frame should be created immediately as a child of the object on which this frame

is supposed to be located. For example:

NewfrmMyFrame (MyFrame1, Panel1);

This call positions the frame to be created on Panel1 by assigning the pointer to the frame to be

created in the variable MyFrame1. The type of the variable MyFrame1 must be PfrmMyFrame,

and like the form in MCK, it is not the created panel itself, but provides a container object for

this panel and its children. The frame panel itself becomes available through the Form field.

It looks, perhaps, a little confusing, but in fact, this is practically the only possible option. Indeed,

after creating a frame, in order to provide some features of its functioning, the code will also

need to refer to its elements. For example, if frmMyFrame contains Panel1 and EditBox1, then

you should use the compound names MyFrame1.Panel1 and MyFrame1.EditBox1 to refer to

these objects in your code. In light of the above, it is easy to draw a parallel with the form and it

becomes clear that the frame panel itself as an object of the PControl type should be available

to the programmer exactly as MyFrame1.Form.

Note that you yourself create (declare, use) the MyFrame1 variable, MCK does not do this for

you. The explanation is simple. It is entirely up to you where such a variable is located, whether it

is a global, local, form field, or in general you store a list of such pointers in an object of the PList

type or in object string pairs of the PStrListEx object. Or maybe you are not going to save a

pointer to the frame at all, and after creating it and specifying some initial settings for it, it

continues to live its own life (until the death of the parent visual object).

353 352

340

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Frames (TKOLFrame)

Just in case, make sure that the Delphi form on which the TKOLFrame is located instead of the

TKOLForm is not included in the list of automatically generated forms. The function call is

supposed to be NewfrmMyFrame you will do it yourself, in the place of the code where you need

it.

If it is necessary to terminate the existence of a frame before the expiration of the parent's

lifespan, then proceed in the same way as with the form: MyFrame1.Form.Free... And, of course,

do not forget to reset the MyFrame1 variable for yourself, or in some other way ensure the

impossibility of accessing a no longer existing object in the application code.

5.21 Data Module (TKOLDataModule)

Similar to the VCL data module (TDataModule), this MCK object is also created to organize a

module containing only non-visual objects. The only difference from the usual form at the

design stage is that the TKOLDataModule object is used instead of the TKOLForm object. The

difference at runtime is that calling the function that constructs this module does not create a

form, even invisible. Similarly to the MCK form, a "container" of objects is also created, and all

objects specified at the development stage are built for it.

In contrast to a frame, a data module is most often used in a single copy (although this is not an

axiom), and in this case it is just convenient to leave the corresponding Delphi form in the auto-

created list, and refer to this object through the corresponding global variable.

In particular, it is allowed to change the order of automatic creation of forms so that the module

with the data is created first. In itself, this is indifferent. It is entirely up to you to control access to

objects that have not yet been created in your code.

However, do not try to use a module with data instead of a form, that is, using this object to

create an application without forms will still fail. If you need an application without a form at all,

then MCK in this case will not be needed at all (as well as a data module).

341

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
The Form

5.22 The Form

Finally, mention should be made of the form itself, which is also a visual object. In the case of

designing without MCK, the form is created by calling
MyForm: = NewForm (Applet, 'form caption');

Always substitute the Applet variable as the parent parameter in the call. Even if the applet is not

used, and the Applet variable is nil, the use of the Applet variable will still be correct, and if you

decide that you still need to use a separate Applet object in the project, then you will not have to

rewrite the code that constructs the forms. In this case, it will be enough to insert a call before

creating the first form.
Applet: = NewApplet ('applet title');

Of course, when designing using MCK, you may not need to write out the code for constructing

the form (if all forms are created automatically, and in a single copy). But even in the case of

using MCK, nevertheless, the forms may need to be created dynamically. For example, if there

are a lot of forms in the project, then to speed up the initial start of the application, it makes

sense to postpone the creation of forms until the moment when they are really needed. Or in

the case when the same form can be designed more than once to display several of its instances

on the screen at a time (without going into the details of why this might be needed).

In this case, pay attention to the specifics of using forms in the case of using MCK. Namely, at the

design stage, the MCK mirror of the form (TKOLForm object) generates the code, and in

particular, for the form named MyForm, it creates the global function NewMyForm. The

definition of this generated function is located in the front-end of the module itself, and its

implementation code is in the file <unit_name> _1.inc. To create a form object, the entry will

now be different than in the case of "pure" KOL:
NewMyForm (MyForm1, Applet);

As you can see, the variable to which the created form object is assigned has moved from the

left side of the assignment operator to the place of the first parameter, and the "title" parameter

has disappeared. The form now gets the title in the "constructor" code generated by MCK,

based on the settings you made when designing the form.

When designing in MCK, you must select the TKOLForm component on the form to change the

properties of the form, and then change something in the Object Inspector. This is mentioned in

another section of this book, but it will not be superfluous to repeat it, since we have already

talked about the form.

Now I will focus on how the TControl object type works at runtime when it performs the

functions of a form. In the case when MCK is used, this is the variable MyForm.Form, in the case

of "pure" KOL, this is the variable MyForm itself of the PControl type.

342

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
The Form

There are the following features: in KOL, the form cannot process the OnClick message

(although the OnMouseDown and OnMouseUp events work correctly). In addition, the

KeyPreview property is not available by simply assigning TRUE to this property. You must first

add the KEY_PREVIEW symbol to the project options.

5.23 "Alien" Panel

It is worth mentioning the relatively new feature in KOL to create a panel, for which an arbitrary

window can be specified as a parent, including the window of someone else's application. For

example, such a window could be the Windows taskbar. To create a "foreign" panel, use the

constructor:
AP: = NewAlienPanel (ParentWnd, edgeStyle);

A “foreign” panel acts in the same way as a regular one, but its parent is specified not as a

pointer to an object of the PControl type, but as a window handle. There are no other features. It

should only be remembered that if the parent window is destroyed, the "foreign" panel will also

be destroyed.

In MCK, there is no mirror for the foreign panel itself. you need to construct it with your own

code. But to fill the "foreign" panel with content, you can use the frame mechanism described in

two paragraphs above - if MCK is used for design.

5.24 MDI Interface

To conclude this section, let's take a look at creating MDI applications separately. A multi-

document interface can be built either manually or using MCK. But in any case, the conditional

compilation symbol should be added to the project options USE_MDI (This is done both to save

code and to improve performance for all other cases - when an MDI interface is not required.)...

With manual coding, the first step is to create a client window that is a child of the form. A

common practice when designing an MDI interface is to use the entire form space except for the

main menu, the toolbar (if present), and the status bar (also optional) for the client area. But it is

not forbidden to place other visual elements, for example, on the sides of the client area. Client

creation is done by calling the function

NewMDIClient (ParentForm, WindowMenuHandle)

Pay attention to the parameter WindowMenuHandle. This is a handle to a submenu where the

system will automatically add the names of MDI child windows. If you specify 0 as this

parameter, but the window names will not be added. If such a possibility is desired, then you

should first create the main menu, and then pass the descriptor of the desired submenu as the

second parameter. For example, like this:

345

343

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
MDI Interface

var MainMenu: PMenu;
 MainForm, MDI_Client: PControl;
MainMenu: = NewMenu (MainForm, 0, [
'New', '(', 'Create MDI Child', ')',
'Window', '(', 'Tile', 'Cascade', ')', ''],
 TOnMenuItem (MakeMethod (nil, @MenuItems)));
MDI_Client: = NewMDIClient (MainForm,
GetSubMenu (MainMenu, 1));

To create MDI child windows, use the function

NewMDIChild (ParentMDIClient, 'MDIChildName');

There can be several such windows, they can be created dynamically, which is quite common for

an MDI interface. On such a child window, arbitrary visual elements can be located, as on a

regular panel. When developing child windows, it should be taken into account that their sizes

can change, in particular, the window can be maximized over the client window.

Visual development of an MDI interface using MCK is also possible. For which there are mirror

classes TKOLMDIClient and TKOLMDIChild. It is likely that only the first of them will be useful,

while child windows will still have to be created dynamically. To simplify creation, it is

recommended to use TKOLFrame, on which the necessary visual objects are placed in

development mode, and at runtime the resulting set of objects is simply cloned by calling the

corresponding function.

It should be noted that some operations with MDI windows are performed in a

slightly different way than with ordinary visual objects. For example, to

programmatically maximize a certain client window, it is preferable to use

sending a WM_MDIMAXIMIZE message to the client window, although it is

possible to send a WM_SYSCOMMAND message with wParam = SC_MAXIMIZE to

the child window itself.

345

344

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
DateTime Picker

5.25 DateTime Picker

function NewDateTimePicker(AParent: PControl; Options:
TDateTimePickerOptions): PControl;

Creates date and time picker common control.

5.26 Visual objects - Syntax

Following constructing functions for visual controls are available:

NewApplet
function NewApplet(const Caption: KOLString):
PControl;

NewForm
function NewForm(AParent: PControl; const Caption:
KOLString): PControl;

NewButton
function NewButton(AParent: PControl; const Caption:

KOLString): PControl;

NewBitBtn

function NewBitBtn(AParent: PControl; const Caption:
KOLString; Options: TBitBtnOptions; Layout:
TGlyphLayout; GlyphBitmap: HBitmap; GlyphCount:

Integer): PControl;

346

369

367

350

351

345

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Visual objects - Syntax

NewApplet
function NewApplet(const Caption: KOLString):
PControl;

NewLabel
function NewLabel(AParent: PControl; const Caption:
KOLString): PControl;

NewWordWrapLabel
function NewWordWrapLabel(AParent: PControl; const
Caption: KOLString): PControl;

NewLabelEffect
function NewLabelEffect(AParent: PControl; const
Caption: KOLString; ShadowDeep: Integer): PControl;

NewPaintbox function NewPaintbox(AParent: PControl): PControl;

NewImageShow
function NewImageShow(AParent: PControl; AImgList:

PImageList; ImgIdx: Integer): PControl;

NewScrollBar
function NewScrollBar(AParent: PControl; BarSide:

TScrollerBar): PControl;

NewScrollBox
function NewScrollBox(AParent: PControl; EdgeStyle:

TEdgeStyle; Bars: TScrollerBars): PControl;

NewScrollBoxEx
function NewScrollBoxEx(AParent: PControl;
EdgeStyle: TEdgeStyle): PControl;

NewGradientPanel
function NewGradientPanel(AParent: PControl; Color1,
 Color2: TColor): PControl;

NewGradientPanelEx
function NewGradientPanelEx(AParent: PControl;
Color1, Color2: TColor; Style: TGradientStyle;
Layout: TGradientLayout): PControl;

NewPanel
function NewPanel(AParent: PControl; EdgeStyle:
TEdgeStyle): PControl;

NewMDIClient
function NewMDIClient(AParent: PControl; WindowMenu:
THandle): PControl;

NewMDIChild
function NewMDIChild(AParent: PControl; const
ACaption: KOLString): PControl;

NewSplitter
function NewSplitter(AParent: PControl; MinSizePrev,

 MinSizeNext: Integer): PControl;

NewSplitterEx

function NewSplitterEx(AParent: PControl;
MinSizePrev, MinSizeNext: Integer; EdgeStyle:

TEdgeStyle): PControl;

NewGroupbox
function NewGroupbox(AParent: PControl; const
Caption: KOLString): PControl;

NewCheckbox
function NewCheckbox(AParent: PControl; const
Caption: KOLString): PControl;

NewCheckBox3State
function NewCheckBox3State(AParent: PControl; const
Caption: KOLString): PControl;

NewRadiobox
function NewRadiobox(AParent: PControl; const
Caption: KOLString): PControl;

NewEditbox
function NewEditbox(AParent: PControl; Options:
TEditOptions): PControl;

NewRichEdit
function NewRichEdit(AParent: PControl; Options:
TEditOptions): PControl;

NewRichEdit1
function NewRichEdit1(AParent: PControl; Options:
TEditOptions): PControl;

369

346

346

347

348

348

349

350

350

347

347

347

370

370

348

349

348

352

353

353

353

354

358

346

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Visual objects - Syntax

NewApplet
function NewApplet(const Caption: KOLString):
PControl;

NewListbox
function NewListbox(AParent: PControl; Options:
TListOptions): PControl;

NewCombobox
function NewCombobox(AParent: PControl; Options:
TComboOptions): PControl;

NewProgressbar
function NewProgressbar(AParent: PControl):
PControl;

NewProgressbarEx
function NewProgressbarEx(AParent: PControl;
Options: TProgressbarOptions): PControl;

NewListView

function NewListView(AParent: PControl; Style:
TListViewStyle; Options: TListViewOptions;
ImageListSmall, ImageListNormal, ImageListState:
PImageList): PControl;

NewTreeView
function NewTreeView(AParent: PControl; Options:
TTreeViewOptions; ImgListNormal, ImgListState:
PImageList): PControl;

NewTabControl

function NewTabControl(AParent: PControl; const
Tabs: array of PKOLChar; Options: TTabControlOptions;
ImgList: PImageList; ImgList1stIdx: Integer):
PControl;

NewTabEmpty
function NewTabEmpty(AParent: PControl; Options:
TTabControlOptions; ImgList: PImageList): PControl;

NewToolbar

function NewToolbar(AParent: PControl; Align:
TControlAlign; Options: TToolbarOptions ; Bitmap:
HBitmap; const Buttons: array of PKOLChar; const
BtnImgIdxArray: array of Integer): PControl;

NewDateTimePicker
function NewDateTimePicker(AParent: PControl;
Options: TDateTimePickerOptions): PControl;

5.26.1 Function NewLabel

function NewLabel(AParent: PControl; const Caption: KOLString): PControl;

Creates static text control (native Windows STATIC control). Use property Caption at run time to

change label text. Also it is possible to adjust label Font , Brush or Color. Label can be

Transparent . If You want to have rotated text label, call NewLabelEffect instead and change

its Font.FontOrientation.

Other references certain for a label:

Caption property Caption: KOLString;

TextAlign property TextAlign: TTextAlign;

VerticalAlign property VerticalAlign: TVerticalAlign;

5.26.2 Function NewWordWrapLabel

function NewWordWrapLabel(AParent: PControl; const Caption: KOLString):
PControl;

369

358

359

350

350

360

362

366

366

364

370

347

347

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Visual objects - Syntax

Creates multiline static text control (native Windows STATIC control), which can wrap long text

onto several lines. See also NewLabel . See also:

Caption property Caption: KOLString;

5.26.3 Function NewLabelEffect

function NewLabelEffect(AParent: PControl; const Caption: KOLString;
ShadowDeep: Integer): PControl;

Creates 3D-label with capability to rotate its text Caption, which is controlled by changing

Font.FontOrientation property. If You want to get flat effect label (e.g. to rotate it only), pass

ShadowDeep= 0. Please note, that drawing procedure uses Canvas property, so using of

LabelEffect leads to increase size of executable. See also:

Caption property Caption: KOLString;

ShadowDeep property ShadowDeep: Integer;

5.26.4 Function NewPanel

function NewPanel(AParent: PControl; EdgeStyle: TEdgeStyle): PControl;

Creates panel, which can be parent for other controls (though, any control can be used as a

parent for other ones, but panel is specially designed for such purpose).

5.26.5 Function NewGradientPanel

function NewGradientPanel(AParent: PControl; Color1, Color2: TColor):
PControl;

Creates gradient-filled STATIC control. To adjust colors at the run time, change Color1 and

Color2 properties (which initially are assigned from Color1, Color2 parameters), and call

Invalidate method to repaint control.

5.26.6 Function NewGradientPanelEx

function NewGradientPanelEx(AParent: PControl; Color1, Color2: TColor;
Style: tGradientStyle; Layout: TGradientLayout): PControl;

Creates gradient-filled STATIC control. To adjust colors at the run time, change Color1 and

Color2 properties (which initially are assigned from Color1, Color2 parameters), and call

Invalidate method to repaint control. Depending on style and first line/point layout, can looking

different. Idea: Vladimir Stojiljkovic.

346

348

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Visual objects - Syntax

5.26.7 Function NewGroupBox

function NewGroupbox(AParent: PControl; const Caption: KOLString):
PControl;

Creates group box control. Note, that to group radio items, group box is not necessary - any

parent can play role of group for radio items. See also NewPanel .

5.26.8 Function NewPaintBox

function NewPaintbox(AParent: PControl): PControl;

Creates owner-drawn STATIC control. Set its OnPaint event to perform custom painting.

Canvas property Canvas: PCanvas;

5.26.9 Function ImageShow

function NewImageShow(AParent: PControl; AImgList: PImageList; ImgIdx:
Integer): PControl;

Creates an image show control, implemented as a paintbox which is used to draw an image

from the imagelist . At run-time, use property CurIndex to select another image from the

imagelist , and a property ImageListNormal to use another image list. When the control is

created, its size becomes equal to dimensions of imagelist (if any).

5.26.10 Function NewSplitter

function NewSplitter(AParent: PControl; MinSizePrev, MinSizeNext: Integer):
PControl;

Creates splitter control, which will separate previous one (i.e. last created one before splitter on

the same parent) from created next, allowing to user to adjust size of separated controls by

dragging the splitter in desired direction. Created splitter becomes vertical or horizontal

depending on Align style of previous control on the same parent (if caLeft/caRight then vertical,

if caTop/caBottom then horizontal).

Please note, what if previous control has no Align equal to caLeft/caRight or caTop/caBottom,

splitter will not be able to function normally. If previous control does not exist, it is yet possible

to use splitter as a resizeable panel (but set its initial Align value first - otherwise it is not set by

default. Also, change Cursor property as You wish in that case, since it is not set too in case,

when previous control does not exist).

Additional parameters determine, which minimal size (width or height - correspondently to split

direction) is allowed for left (top) control and to rest of client area of parent, correspondingly. (It

is possible later to set second control for checking its size with MinSizeNext value - using

TControl.SecondControl property). If -1 passed, correspondent control size is not checked

347

348

174

174

349

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Visual objects - Syntax

during dragging of splitter. Usually 0 is more suitable value (with this value, it is guarantee, that

splitter will be always available even if mouse was released far from the edge of form).

It is possible for user to press Escape any time while dragging splitter to abort all adjustments

made starting from left mouse button push and begin of drag the splitter. But remember please,

that such event is controlled using timer, and therefore correspondent keyboard events are

received by currently focused control. Be sure, that pressing Escape will not affect to any control

on form, which could be focused, otherwise filter keyboard messages (by yourself) to prevent

undesired handling of Escape key by certain controls while splitting. (Use Dragging property to

check if splitter is dragging by user with mouse).

See also: NewSplitterEx

OnSplit property OnSplit: TOnSplit;

MinSizePrev property MinSizePrev: Integer;

MinSizeNext property MinSizeNext: Integer;

SecondControl property SecondControl: PControl;

Dragging property Dragging: Boolean;

function NewSplitterEx(AParent: PControl; MinSizePrev, MinSizeNext: Integer;
EdgeStyle: TEdgeStyle): PControl;

Creates splitter control. Difference from NewSplitter is what it is possible to determine if a

splitter will be beveled or not. See also NewSplitter .

5.26.11 Function NewScrollBar

function NewScrollBar(AParent: PControl; BarSide: TScrollerBar): PControl;

Creates simple scroll bar.

SBMin property SBMin: Longint;

SBMax property SBMax: Longint;

SBMinMax property SBMinMax: TPoint;

SBPosition property SBPosition: Integer;

SBPageSize property SBPageSize: Integer;

OnSBScroll property OnSBScroll: TOnSBScroll;

349

348

348

350

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Visual objects - Syntax

5.26.12 Function NewProgressBar

function NewProgressbar(AParent: PControl): PControl;

Creates progress bar control. Following properties are special for progress bar:

Progress
property Progress: Integer index((PBM_SETPOS or
$8000) shl 16) or PBM_GETPOS;

MaxProgress

property MaxProgress: Integer
index((PBM_SETRANGE32 or $8000) shl 16) or

PBM_GETRANGE;

ProgressColor property ProgressColor: TColor;

ProgressBkColor property ProgressBkColor: TColor;

function NewProgressbarEx(AParent: PControl; Options: TProgressbarOptions):
PControl;

Can create progress bar with smooth style (progress is not segmented onto bricks) or/and

vertical progress bar - using additional parameter. For list of properties, suitable for progress

bars, see NewProgressbar .

5.26.13 Function NewScrollBox

function NewScrollBox(AParent: PControl; EdgeStyle: TEdgeStyle; Bars:
TScrollerBars): PControl;

Creates simple scrolling box, which can be used any way you wish, e.g. to scroll certain large

image. To provide automatic scrolling of a set of child controls, use advanced scroll box, created

with NewScrollBoxEx .

function NewScrollBoxEx(AParent: PControl; EdgeStyle: TEdgeStyle):
PControl;

Creates extended scrolling box control, which automatically scrolls child controls (if any).

5.26.14 Function NewButton

function NewButton(AParent: PControl; const Caption: KOLString): PControl;

Creates button on given parent control or form. Please note, that in Windows, buttons can not

change its Font color and to be Transparent .

Following methods, properies and events are (especially) useful with a button:

OnClick property OnClick: TOnEvent;

SetButtonIcon function SetButtonIcon(aIcon: HIcon): PControl;

SetButtonBitmap
function SetButtonBitmap(aBmp: HBitmap):
PControl;

350

350

351

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Visual objects - Syntax

OnClick property OnClick: TOnEvent;

LikeSpeedButton function LikeSpeedButton: PControl;

Click procedure Click;

Caption property Caption: KOLString;

DefaultBtn property DefaultBtn: Boolean;

CancelBtn property CancelBtn: Boolean;

TextAlign property TextAlign: TTextAlign;

VerticalAlign property VerticalAlign: TVerticalAlign;

5.26.15 Function NewBitBtn

function NewBitBtn(AParent: PControl; const Caption: KOLString; Options:
TBitBtnOptions; Layout: TGlyphLayout; GlyphBitmap: HBitmap; GlyphCount:
Integer): PControl;

Creates image button (actually implemented as owner-drawn). In Options, it is possible to

determine, whether bitmap or image list used to contain one or more (up to 5) images,

correspondent to certain BitBtn state.

For case of imagelist (option bboImageList), it is possible to use a number of glyphs from the

image list, starting from image index given by GlyphCount parameter. Number of used glyphs

is passed in that case in high word of GlyphCount parameter (if 0, one image is used therefore).

For bboImageList, BitBtn can be Transparent (and in that case bboNoBorder style can be

useful to draw custom buttons of non-rectangular shape).

For case of bitmap BitBtn, image is stretched down (if too big), but can not be transparent. It

is not necessary for bitmap BitBtn to pass correct GlyphCount - it is calculated on base of

bitmap size, if 0 is passed.

And, certainly, BitBtn can be without glyph image (text only). For that case, it is therefore is more

flexible and power than usual Button (but requires more code). E.g., BitBtn can change its Font,

Color , and to be totally Transparent. Moreover, BitBtn can be Flat , bboFixed, SpeedButton

and have property RepeatInterval.

Note: if You use bboFixed Style, use OnChange event instead of OnClick, because Checked

state is changed immediately however OnClick occure only when mouse or space key released

(and can be not called at all if mouse button is released out of BitBtn bounds). Also, bboFixed

defines only which glyph to show (the border if it is not turned off behaves as usual for a button,

i.e. it becomes lowered and then raised again at any click).

Here You can find references to other properties, events and methods applicable to BitBtn:

352

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Visual objects - Syntax

OnBitBtnDraw property OnBitBtnDraw: TOnBitBtnDraw;

OnTestMouseOver property OnTestMouseOver: TOnTestMouseOver;

LikeSpeedButton function LikeSpeedButton: PControl;

Caption property Caption: KOLString;

BitBtnDrawMnemonic property BitBtnDrawMnemonic: Boolean;

TextShiftX property TextShiftX: Integer;

TextShiftY property TextShiftY: Integer;

BitBtnImgIdx property BitBtnImgIdx: Integer;

BitBtnImgList property BitBtnImgList: THandle;

DefaultBtn property DefaultBtn: Boolean;

CancelBtn property CancelBtn: Boolean;

TextAlign property TextAlign: TTextAlign;

MouseInControl property MouseInControl: Boolean;

Flat property Flat: Boolean;

RepeatInterval property RepeatInterval: Integer;

ImageListNormal property ImageListNormal: PImageList;

Checked property Checked: Boolean;

5.26.16 Function NewCheckBox

function NewCheckbox(AParent: PControl; const Caption: KOLString):
PControl;

Creates check box control. Special properties, methods, events:

OnClick property OnClick: TOnEvent;

SetChecked
function SetChecked(const Value: Boolean):
PControl;

Click procedure Click;

Checked property Checked: Boolean;

Check3 property Check3: TTriStateCheck;

353

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Visual objects - Syntax

5.26.17 Function NewCheckBox3State

function NewCheckBox3State(AParent: PControl; const Caption: KOLString):
PControl;

Creates check box control with 3 states. Special properties, methods, events:

OnClick property OnClick: TOnEvent;

SetChecked
function SetChecked(const Value: Boolean):
PControl;

Click procedure Click;

Checked property Checked: Boolean;

Check3 property Check3: TTriStateCheck;

5.26.18 Function NewRadiobox

function NewRadiobox(AParent: PControl; const Caption: KOLString):
PControl;

Creates radio box control. Alternative radio items must have the same parent window

(regardless of its kind, either groupbox (NewGroupbox), panel (NewPanel) or form itself).

Following properties, methods and events are specially for radiobox controls:

OnClick property OnClick: TOnEvent;

SetRadioChecked function SetRadioChecked: PControl;

Click procedure Click;

Checked property Checked: Boolean;

5.26.19 Function NewEditBox

function NewEditbox(AParent: PControl; Options: TEditOptions): PControl;

Creates edit box control. To create multiline edit box, similar to TMemo in VCL, apply

eoMultiline in Options. Following properties, methods, events are special for edit controls:

OnChange property OnChange: TOnEvent;

SelectAll procedure SelectAll;

ReplaceSelection
procedure ReplaceSelection(const Value:
KOLString; aCanUndo: Boolean);

DeleteLines
procedure DeleteLines(FromLine, ToLine:
Integer);

Item2Pos function Item2Pos(ItemIdx: Integer): DWORD;

Pos2Item function Pos2Item(Pos: Integer): DWORD;

SavePosition function SavePosition: TEditPositions;

348 347

354

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Visual objects - Syntax

OnChange property OnChange: TOnEvent;

RestorePosition
procedure RestorePosition(const p:
TEditPositions);

UpdatePosition
procedure UpdatePosition(var p: TEditPositions;
FromPos, CountInsertDelChars,
CountInsertDelLines: Integer);

EditTabChar function EditTabChar: PControl;

CanUndo function CanUndo: Boolean;

EmptyUndoBuffer procedure EmptyUndoBuffer;

Undo function Undo: Boolean;

Text property Text: KOLString;

SelStart property SelStart: Integer;

SelLength property SelLength: Integer;

Selection property Selection: KOLString;

Count property Count: Integer;

Items property Items[Idx: Integer]: KOLString;

ItemSelected
property ItemSelected[ItemIdx: Integer]:
Boolean;

TextAlign property TextAlign: TTextAlign;

Ed_Transparent property Ed_Transparent: Boolean;

5.26.20 Function NewRichEdit

function NewRichEdit(AParent: PControl; Options: TEditOptions): PControl;

Creates rich text edit control. A rich edit control is a window in which the user can enter and edit

text. The text can be assigned character and paragraph formatting, and can include embedded

OLE objects. Rich edit controls provide a programming interface for formatting text. However,

an application must implement any user interface components necessary to make formatting

operations available to the user.

Note: eoPassword, eoMultiline options have no effect for RichEdit control. Some operations

are supersided with special versions of those, created especially for RichEdit, but in some cases it

is necessary to use another properties and methods, specially designed for RichEdit (see

methods and properties, which names are starting from RE_...).

Following properties, methods, events are special for edit controls:

OnSelChange property OnSelChange: TOnEvent;

OnRE_InsOvrMode_Change property OnRE_InsOvrMode_Change: TOnEvent;

OnProgress property OnProgress: TOnEvent;

355

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Visual objects - Syntax

OnSelChange property OnSelChange: TOnEvent;

OnRE_OverURL property OnRE_OverURL: TOnEvent;

OnRE_URLClick property OnRE_URLClick: TOnEvent;

BeginUpdate procedure BeginUpdate;

SelectAll procedure SelectAll;

ReplaceSelection
procedure ReplaceSelection(const Value:
KOLString; aCanUndo: Boolean);

DeleteLines
procedure DeleteLines(FromLine, ToLine:
Integer);

RE_TextSizePrecise function RE_TextSizePrecise: Integer;

RE_FmtStandard function RE_FmtStandard: PControl;

RE_CancelFmtStandard; procedure RE_CancelFmtStandard;

RE_LoadFromStream
function RE_LoadFromStream(Stream: PStream;
Length: Integer; Format: TRETextFormat;
SelectionOnly: Boolean): Boolean;

RE_SaveToStream
function RE_SaveToStream(Stream: PStream;
Format: TRETextFormat; SelectionOnly: Boolean):
Boolean;

RE_LoadFromFile
function RE_LoadFromFile(const Filename:
KOLString; Format: TRETextFormat; SelectionOnly:
Boolean): Boolean;

RE_SaveToFile
function RE_SaveToFile(const Filename:
KOLString; Format: TRETextFormat; SelectionOnly:
Boolean): Boolean;

RE_HideSelection procedure RE_HideSelection(aHide: Boolean);

RE_SearchText
function RE_SearchText(const Value: KOLString;
MatchCase, WholeWord, ScanForward: Boolean;
SearchFrom, SearchTo: Integer): Integer;

RE_WSearchText

function RE_WSearchText(const Value:
KOLWideString; MatchCase, WholeWord, ScanForward:
Boolean; SearchFrom, SearchTo: Integer):
Integer;

RE_NoOLEDragDrop function RE_NoOLEDragDrop: PControl;

CanUndo function CanUndo: Boolean;

EmptyUndoBuffer procedure EmptyUndoBuffer;

Undo function Undo: Boolean;

FreeCharFormatRec procedure FreeCharFormatRec;

SelStart property SelStart: Integer;

SelLength property SelLength: Integer;

Selection property Selection: KOLString;

Count property Count: Integer;

Items property Items[Idx: Integer]: KOLString;

356

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Visual objects - Syntax

OnSelChange property OnSelChange: TOnEvent;

MaxTextSize property MaxTextSize: DWORD;

TextSize property TextSize: Integer;

RE_TextSize
property RE_TextSize[Units: TRichTextSize]:
Integer;

RE_CharFmtArea property RE_CharFmtArea: TRichFmtArea;

RE_CharFormat property RE_CharFormat: TCharFormat;

RE_Font property RE_Font: PGraphicTool;

RE_FmtBold property RE_FmtBold: Boolean;

RE_FmtItalic property RE_FmtItalic: Boolean;

RE_FmtStrikeout property RE_FmtStrikeout: Boolean;

RE_FmtUnderline property RE_FmtUnderline: Boolean;

RE_FmtUnderlineStyle property RE_FmtUnderlineStyle: TRichUnderline;

RE_FmtProtected property RE_FmtProtected: Boolean;

RE_FmtProtectedValid property RE_FmtProtectedValid: Boolean;

RE_FmtHidden property RE_FmtHidden: Boolean;

RE_FmtHiddenValid property RE_FmtHiddenValid: Boolean;

RE_FmtLink property RE_FmtLink: Boolean;

RE_FmtFontSize
property RE_FmtFontSize: Integer index(12 shl
16) or CFM_SIZE;

RE_FmtFontSizeValid property RE_FmtFontSizeValid: Boolean;

RE_FmtAutoBackColor property RE_FmtAutoBackColor: Boolean;

RE_FmtFontColor
property RE_FmtFontColor: Integer index(20 shl
16) or CFM_COLOR;

RE_FmtFontColorValid property RE_FmtFontColorValid: Boolean;

RE_FmtAutoColor property RE_FmtAutoColor: Boolean;

RE_FmtBackColor
property RE_FmtBackColor: Integer index((64 +
32) shl 16) or CFM_BACKCOLOR;

RE_FmtFontOffset
property RE_FmtFontOffset: Integer index(16 shl
16) or CFM_OFFSET;

RE_FmtFontOffsetValid property RE_FmtFontOffsetValid: Boolean;

RE_FmtFontCharset
property RE_FmtFontCharset: Integer index(25 shl
 16) or CFM_CHARSET;

RE_FmtFontCharsetValid property RE_FmtFontCharsetValid: Boolean;

RE_FmtFontName property RE_FmtFontName: KOLString;

RE_FmtFontNameValid property RE_FmtFontNameValid: Boolean;

RE_ParaFmt property RE_ParaFmt: TParaFormat;

RE_TextAlign property RE_TextAlign: TRichTextAlign;

357

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Visual objects - Syntax

OnSelChange property OnSelChange: TOnEvent;

RE_TextAlignValid property RE_TextAlignValid: Boolean;

RE_Numbering property RE_Numbering: Boolean;

RE_NumStyle property RE_NumStyle: TRichNumbering;

RE_NumStart property RE_NumStart: Integer;

RE_NumBrackets property RE_NumBrackets: TRichNumBrackets;

RE_NumTab property RE_NumTab: Integer;

RE_NumberingValid property RE_NumberingValid: Boolean;

RE_Level property RE_Level: Integer;

RE_SpaceBefore property RE_SpaceBefore: Integer;

RE_SpaceBeforeValid property RE_SpaceBeforeValid: Boolean;

RE_SpaceAfter property RE_SpaceAfter: Integer;

RE_SpaceAfterValid property RE_SpaceAfterValid: Boolean;

RE_LineSpacing property RE_LineSpacing: Integer;

RE_SpacingRule property RE_SpacingRule: Integer;

RE_LineSpacingValid property RE_LineSpacingValid: Boolean;

RE_Indent
property RE_Indent: Integer index(20 shl 16) or
PFM_OFFSET;

RE_IndentValid property RE_IndentValid: Boolean;

RE_StartIndent
property RE_StartIndent: Integer index(12 shl
16) or PFM_STARTINDENT;

RE_StartIndentValid property RE_StartIndentValid: Boolean;

RE_RightIndent
property RE_RightIndent: Integer index(16 shl
16) or PFM_RIGHTINDENT;

RE_RightIndentValid property RE_RightIndentValid: Boolean;

RE_TabCount property RE_TabCount: Integer;

RE_Tabs property RE_Tabs[Idx: Integer]: Integer;

RE_TabsValid property RE_TabsValid: Boolean;

RE_AutoKeyboard property RE_AutoKeyboard: Boolean;

RE_AutoFont property RE_AutoFont: Boolean;

RE_AutoFontSizeAdjust property RE_AutoFontSizeAdjust: Boolean;

RE_DualFont property RE_DualFont: Boolean;

RE_UIFonts property RE_UIFonts: Boolean;

RE_IMECancelComplete property RE_IMECancelComplete: Boolean;

RE_IMEAlwaysSendNotify property RE_IMEAlwaysSendNotify: Boolean;

RE_OverwriteMode property RE_OverwriteMode: Boolean;

358

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Visual objects - Syntax

OnSelChange property OnSelChange: TOnEvent;

RE_DisableOverwriteChange property RE_DisableOverwriteChange: Boolean;

RE_Text
property RE_Text[Format: TRETextFormat;
SelectionOnly: Boolean]: KOLString;

RE_Error property RE_Error: Integer;

RE_AutoURLDetect property RE_AutoURLDetect: Boolean;

RE_URL property RE_URL: PKOLChar;

RE_Transparent property RE_Transparent: Boolean;

RE_Zoom property RE_Zoom: TSmallPoint;

function NewRichEdit1(AParent: PControl; Options: TEditOptions): PControl;

Like NewRichEdit , but to work with older RichEdit control version 1.0 (window class 'RichEdit'

forced to use instead of 'RichEdit20A', even if library RICHED20.DLL found and loaded

successfully). One more difference - OleInit is not called, so the most of OLE capabilities of

RichEdit could not working.

5.26.21 Function NewListbox

function NewListbox(AParent: PControl; Options: TListOptions): PControl;

Creates list box control. Following properties, methods and events are special for Listbox:

OnMeasureItem property OnMeasureItem: TOnMeasureItem;

OnChange property OnChange: TOnEvent;

OnSelChange property OnSelChange: TOnEvent;

OnDrawItem property OnDrawItem: TOnDrawItem;

BeginUpdate procedure BeginUpdate;

IndexOf function IndexOf(const S: KOLString): Integer;

SearchFor
function SearchFor(const S: KOLString;
StartAfter: Integer; Partial: Boolean): Integer;

AddDirList
procedure AddDirList(const Filemask: KOLString;
Attrs: DWORD);

Add function Add(const S: KOLString): Integer;

Insert
function Insert(Idx: Integer; const S:
 KOLString): Integer;

Delete procedure Delete(Idx: Integer);

LBItemAtPos function LBItemAtPos(X, Y: Integer): Integer;

SelLength property SelLength: Integer;

CurIndex property CurIndex: Integer;

354

359

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Visual objects - Syntax

OnMeasureItem property OnMeasureItem: TOnMeasureItem;

Count property Count: Integer;

Items property Items[Idx: Integer]: KOLString;

ItemSelected
property ItemSelected[ItemIdx: Integer]:
Boolean;

ItemData property ItemData[Idx: Integer]: DWORD;

LVItemHeight property LVItemHeight: Integer;

LBTopIndex property LBTopIndex: Integer;

5.26.22 Function NewCombobox

function NewCombobox(AParent: PControl; Options: TComboOptions): PControl;

Creates new combo box control. Note, that it is not possible to align combobox caLeft or

caRight: this can cause infinite recursion in the application.

Following properties, methods and events are special for Combobox:

OnDropDown property OnDropDown: TOnEvent;

OnCloseUp property OnCloseUp: TOnEvent;

OnMeasureItem property OnMeasureItem: TOnMeasureItem;

OnChange property OnChange: TOnEvent;

OnSelChange property OnSelChange: TOnEvent;

OnDrawItem property OnDrawItem: TOnDrawItem;

AddDirList
procedure AddDirList(const Filemask: KOLString;
Attrs: DWORD);

Add function Add(const S: KOLString): Integer;

Insert
function Insert(Idx: Integer; const S:
 KOLString): Integer;

Delete procedure Delete(Idx: Integer);

CurIndex property CurIndex: Integer;

Count property Count: Integer;

Items property Items[Idx: Integer]: KOLString;

ItemSelected
property ItemSelected[ItemIdx: Integer]:
Boolean;

ItemData property ItemData[Idx: Integer]: DWORD;

DroppedWidth property DroppedWidth: Integer;

DroppedDown property DroppedDown: Boolean;

360

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Visual objects - Syntax

5.26.23 Function NewListView

function NewListView(AParent: PControl; Style: TListViewStyle; Options: TListViewOptions; ImageListSmall, ImageListNormal, ImageListState: PImageList): PControl;

Creates list view control. It is very powerful control, which can partially compensate absence of

grid controls (in lvsDetail view mode).

Properties, methods and events, special for list view control are:

OnMeasureItem property OnMeasureItem: TOnMeasureItem;

OnEndEditLVItem property OnEndEditLVItem: TOnEditLVItem;

OnLVDelete property OnLVDelete: TOnDeleteLVItem;

OnDeleteLVItem property OnDeleteLVItem: TOnDeleteLVItem;

OnDeleteAllLVItems property OnDeleteAllLVItems: TOnEvent;

OnLVData property OnLVData: TOnLVData;

OnCompareLVItems property OnCompareLVItems: TOnCompareLVItems;

OnColumnClick property OnColumnClick: TOnLVColumnClick;

OnLVStateChange property OnLVStateChange: TOnLVStateChange;

OnDrawItem property OnDrawItem: TOnDrawItem;

OnLVCustomDraw property OnLVCustomDraw: TOnLVCustomDraw;

BeginUpdate procedure BeginUpdate;

Delete procedure Delete(Idx: Integer);

SetUnicode
function SetUnicode(Unicode: Boolean):
PControl;

LVColAdd
procedure LVColAdd(const aText: KOLString;
aalign: TTextAlign; aWidth: Integer);

LVColInsert
procedure LVColInsert(ColIdx: Integer; const
aText: KOLString; aAlign: TTextAlign; aWidth:
Integer);

LVColDelete procedure LVColDelete(ColIdx: Integer);

LVNextItem
function LVNextItem(IdxPrev: Integer; Attrs:
DWORD): Integer;

LVNextSelected
function LVNextSelected(IdxPrev: Integer):
Integer;

LVAdd
function LVAdd(const aText: KOLString; ImgIdx:
Integer; State: TListViewItemState; StateImgIdx,
OverlayImgIdx: Integer; Data: DWORD): Integer;

LVItemAdd
function LVItemAdd(const aText: KOLString):
Integer;

LVInsert

function LVInsert(Idx: Integer; const aText:
KOLString; ImgIdx: Integer; State:
TListViewItemState; StateImgIdx, OverlayImgIdx:
Integer; Data: DWORD): Integer;

361

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Visual objects - Syntax

OnMeasureItem property OnMeasureItem: TOnMeasureItem;

LVItemInsert
function LVItemInsert(Idx: Integer; const aText:
KOLString): Integer;

LVDelete procedure LVDelete(Idx: Integer);

LVSetItem

procedure LVSetItem(Idx, Col: Integer; const
aText: KOLString; ImgIdx: Integer; State:
TListViewItemState; StateImgIdx, OverlayImgIdx:
Integer; Data: DWORD);

LVSelectAll procedure LVSelectAll;

LVItemRect
function LVItemRect(Idx: Integer; Part:
TGetLVItemPart): TRect;

LVSubItemRect
function LVSubItemRect(Idx, ColIdx: Integer):
TRect;

LVItemAtPos function LVItemAtPos(X, Y: Integer): Integer;

LVItemAtPosEx
function LVItemAtPosEx(X, Y: Integer; var Where:
 TWherePosLVItem): Integer;

LVMakeVisible
procedure LVMakeVisible(Item: Integer;
PartiallyOK: Boolean);

LVEditItemLabel procedure LVEditItemLabel(Idx: Integer);

LVSort procedure LVSort;

LVSortData procedure LVSortData;

LVSortColumn procedure LVSortColumn(Idx: Integer);

SelLength property SelLength: Integer;

Count property Count: Integer;

ItemSelected
property ItemSelected[ItemIdx: Integer]:
Boolean;

RightClick property RightClick: Boolean;

ImageListSmall property ImageListSmall: PImageList;

ImageListNormal property ImageListNormal: PImageList;

ImageListState property ImageListState: PImageList;

LVStyle property LVStyle: TListViewStyle;

LVOptions property LVOptions: TListViewOptions;

LVTextColor property LVTextColor: TColor;

LVTextBkColor property LVTextBkColor: TColor;

LVBkColor property LVBkColor: TColor;

LVColCount property LVColCount: Integer;

LVColWidth property LVColWidth[Item: Integer]: Integer;

LVColText property LVColText[Idx: Integer]: KOLString;

LVColAlign property LVColAlign[Idx: Integer]: TTextAlign;

362

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Visual objects - Syntax

OnMeasureItem property OnMeasureItem: TOnMeasureItem;

LVColImage property LVColImage[Idx: Integer]: Integer;

LVColOrder property LVColOrder[Idx: Integer]: Integer;

LVCount property LVCount: Integer;

LVCurItem property LVCurItem: Integer;

LVFocusItem property LVFocusItem: Integer;

LVItemState
property LVItemState[Idx: Integer]:
TListViewItemState;

LVItemStateImgIdx
property LVItemStateImgIdx[Idx: Integer]:
Integer;

LVItemOverlayImgIdx
property LVItemOverlayImgIdx[Idx: Integer]:
Integer;

LVItemData property LVItemData[Idx: Integer]: DWORD;

LVSelCount property LVSelCount: Integer;

LVItemImageIndex
property LVItemImageIndex[Idx: Integer]:
Integer;

LVItems property LVItems[Idx, Col: Integer]: KOLString;

LVItemPos property LVItemPos[Idx: Integer]: TPoint;

LVTopItem property LVTopItem: Integer;

LVPerPage property LVPerPage: Integer;

LVItemHeight property LVItemHeight: Integer;

5.26.24 Function NewTreeView

function NewTreeView(AParent: PControl; Options: TTreeViewOptions;
ImgListNormal, ImgListState: PImageList): PControl;

Creates tree view control. See tree view methods and properties:

OnSelChange property OnSelChange: TOnEvent;

OnTVBeginDrag property OnTVBeginDrag: TOnTVBeginDrag;

OnTVBeginEdit property OnTVBeginEdit: TOnTVBeginEdit;

OnTVEndEdit property OnTVEndEdit: TOnTVEndEdit;

OnTVExpanding property OnTVExpanding: TOnTVExpanding;

OnTVExpanded property OnTVExpanded: TOnTVExpanded;

OnTVDelete property OnTVDelete: TOnTVDelete;

OnTVSelChanging property OnTVSelChanging: TOnTVSelChanging;

BeginUpdate procedure BeginUpdate;

Delete procedure Delete(Idx: Integer);

363

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Visual objects - Syntax

OnSelChange property OnSelChange: TOnEvent;

SetUnicode
function SetUnicode(Unicode: Boolean):
PControl;

TVInsert
function TVInsert(nParent, nAfter: THandle;
const Txt: KOLString): THandle;

TVDelete procedure TVDelete(Item: THandle);

TVItemPath
function TVItemPath(Item: THandle; Delimiter:
KOLChar): KOLString;

TVItemAtPos
function TVItemAtPos(x, y: Integer; var Where:
DWORD): THandle;

TVExpand
procedure TVExpand(Item: THandle; Flags:
DWORD);

TVSort procedure TVSort(N: THandle);

TVEditItem procedure TVEditItem(Item: THandle);

TVStopEdit procedure TVStopEdit(Cancel: Boolean);

Count property Count: Integer;

ImageListNormal property ImageListNormal: PImageList;

ImageListState property ImageListState: PImageList;

TVSelected property TVSelected: THandle;

TVDropHilighted property TVDropHilighted: THandle;

TVFirstVisible property TVFirstVisible: THandle;

TVIndent property TVIndent: Integer;

TVVisibleCount property TVVisibleCount: Integer;

TVRoot property TVRoot: THandle;

TVItemChild property TVItemChild[Item: THandle]: THandle;

TVItemHasChildren
property TVItemHasChildren[Item: THandle]:
Boolean;

TVItemChildCount
property TVItemChildCount[Item: THandle]:
Integer;

TVItemNext property TVItemNext[Item: THandle]: THandle;

TVItemPrevious
property TVItemPrevious[Item: THandle]:
THandle;

TVItemNextVisible
property TVItemNextVisible[Item: THandle]:
THandle;

TVItemPreviousVisible
property TVItemPreviousVisible[Item: THandle]:
THandle;

TVItemParent property TVItemParent[Item: THandle]: THandle;

TVItemText property TVItemText[Item: THandle]: KOLString;

TVItemRect
property TVItemRect[Item: THandle; TextOnly:
Boolean]: TRect;

TVItemVisible property TVItemVisible[Item: THandle]: Boolean;

364

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Visual objects - Syntax

OnSelChange property OnSelChange: TOnEvent;

TVRightClickSelect property TVRightClickSelect: Boolean;

TVEditing property TVEditing: Boolean;

TVItemBold property TVItemBold[Item: THandle]: Boolean;

TVItemCut property TVItemCut[Item: THandle]: Boolean;

TVItemDropHighlighted
property TVItemDropHighlighted[Item: THandle]:
Boolean;

TVItemExpanded
property TVItemExpanded[Item: THandle]:
Boolean;

TVItemExpandedOnce
property TVItemExpandedOnce[Item: THandle]:
Boolean;

TVItemSelected
property TVItemSelected[Item: THandle]:
Boolean;

TVItemImage property TVItemImage[Item: THandle]: Integer;

TVItemSelImg property TVItemSelImg[Item: THandle]: Integer;

TVItemOverlay property TVItemOverlay[Item: THandle]: Integer;

TVItemStateImg
property TVItemStateImg[Item: THandle]:
Integer;

TVItemData property TVItemData[Item: THandle]: Pointer;

5.26.25 Function NewToolbar

function NewToolbar(AParent: PControl; Align: TControlAlign; Options:
TToolbarOptions; Bitmap: HBitmap; const Buttons: array of PKOLChar; const
BtnImgIdxArray: array of Integer): PControl;

Creates toolbar control. Bitmap (if present) must contain images for all buttons excluding

separators (defined by string '-' in Buttons array) and system images, otherwise last buttons will

no have images at all. Image width for every button is assumed to be equal to Bitmap height (if

last of "squares" has insufficient width, it will not be used). To define fixed buttons, use

characters '+' or '-' as a prefix for button string (even empty). To create groups of (radio-)

buttons, use also '!' follow '+' or '-'. (These rules are similar used in menu creation). To define

drop down button, use (as first) prefix '^'. (Do not forget to set OnTBDropDown event for this

case). If You want to assign images to buttons not in the same order how these are placed in

Bitmap (or You use system bitmap), define for every button (in BtnImgIdxArray array) indexes

for every button (excluding separator buttons). Otherwise, it is possible to define index only for

first button (e.g., [0]). It is also possible to change TBImages[] property for such purpose, or do

the same in method TBSetBtnImgIdx).

Following properties, methods and event are specially designed to work with toolbar control:

OnDropDown property OnDropDown: TOnEvent;

OnClick property OnClick: TOnEvent;

365

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Visual objects - Syntax

OnDropDown property OnDropDown: TOnEvent;

OnTBDropDown property OnTBDropDown: TOnEvent;

OnTBClick property OnTBClick: TOnEvent;

OnTBCustomDraw property OnTBCustomDraw: TOnTBCustomDraw;

TBAddBitmap procedure TBAddBitmap(Bitmap: HBitmap);

TBAddButtons
function TBAddButtons(const Buttons: array of
PKOLChar; const BtnImgIdxArray: array of
Integer): Integer;

TBInsertButtons
function TBInsertButtons(BeforeIdx: Integer;
Buttons: array of PKOLChar; const BtnImgIdxArray:
 array of Integer): Integer;

TBDeleteButton procedure TBDeleteButton(BtnID: Integer);

TBDeleteBtnByIdx procedure TBDeleteBtnByIdx(Idx: Integer);

TBClear procedure TBClear;

TBAssignEvents
procedure TBAssignEvents(BtnID: Integer; Events:
 array of TOnToolbarButtonClick);

TBResetImgIdx
procedure TBResetImgIdx(BtnID, BtnCount:
 Integer);

TBItem2Index function TBItem2Index(BtnID: Integer): Integer;

TBIndex2Item function TBIndex2Item(Idx: Integer): Integer;

TBConvertIdxArray2ID
procedure TBConvertIdxArray2ID(const IdxVars:
array of PDWORD);

TBButtonSeparator
function TBButtonSeparator(BtnID: Integer):
Boolean;

TBButtonAtPos function TBButtonAtPos(X, Y: Integer): Integer;

TBBtnIdxAtPos function TBBtnIdxAtPos(X, Y: Integer): Integer;

TBMoveBtn
function TBMoveBtn(FromIdx, ToIdx: Integer):
Boolean;

TBSetTooltips
procedure TBSetTooltips(BtnID1st: Integer; const
Tooltips: array of PKOLChar);

TBBtnTooltip
function TBBtnTooltip(BtnID: Integer):
KOLString;

CurIndex property CurIndex: Integer;

Count property Count: Integer;

RightClick property RightClick: Boolean;

TBCurItem property TBCurItem: Integer;

TBButtonCount property TBButtonCount: Integer;

TBBtnImgWidth property TBBtnImgWidth: Integer;

TBButtonEnabled
property TBButtonEnabled[BtnID: Integer]:
Boolean;

TBButtonVisible
property TBButtonVisible[BtnID: Integer]:
Boolean;

366

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Visual objects - Syntax

OnDropDown property OnDropDown: TOnEvent;

TBButtonChecked
property TBButtonChecked[BtnID: Integer]:
Boolean;

TBButtonMarked
property TBButtonMarked[BtnID: Integer]:
Boolean;

TBButtonPressed
property TBButtonPressed[BtnID: Integer]:
Boolean;

TBButtonText
property TBButtonText[BtnID: Integer]:
KOLString;

TBButtonImage
property TBButtonImage[BtnID: Integer]:
Integer;

TBButtonRect property TBButtonRect[BtnID: Integer]: TRect;

TBButtonWidth
property TBButtonWidth[BtnID: Integer]:
Integer;

TBButtonLParam
property TBButtonLParam[const Idx: Integer]:
DWORD;

TBButtonsMinWidth property TBButtonsMinWidth: Integer;

TBButtonsMaxWidth property TBButtonsMaxWidth: Integer;

TBRows property TBRows: Integer;

5.26.26 Function NewTabControl

function NewTabControl(AParent: PControl; const Tabs: array of PKOLChar;
Options: TTabControlOptions; ImgList: PImageList; ImgList1stIdx: Integer):
PControl;

Creates new tab control (like notebook).

function NewTabEmpty(AParent: PControl; Options: TTabControlOptions;
ImgList: PImageList): PControl;

Creates new empty tab control for using metods TC_Insert (to create Pages as Panel), or

TC_InsertControl (if you want using your custom Pages).

To place child control on a certain page of TabControl, use property Pages[Idx], for example:

Label1 := NewLabel (TabControl1.Pages[0], 'Label1');

To determine number of pages at run time, use property Count ;

to determine which page is currently selected (or to change selection), use property CurIndex ;

to feedback to switch between tabs assign your handler to OnSelChange event;

Note, that by default, tab control is created with a border lowered to tab control's parent. To

remove it, you can apply WS_EX_TRANSPARENT extended style (see TControl.ExStyle

property), but painting of some child controls can be strange a bit in this case (no border

drawing for edit controls was found, but not always...). You can also apply style

WS_THICKFRAME (TControl.Style property) to make the border raised.

Other methods and properties, suitable for tab control, are:

346

367

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Visual objects - Syntax

OnChange property OnChange: TOnEvent;

IndexOf function IndexOf(const S: KOLString): Integer;

SearchFor
function SearchFor(const S: KOLString;
StartAfter: Integer; Partial: Boolean): Integer;

SetUnicode
function SetUnicode(Unicode: Boolean):
PControl;

TC_Insert
function TC_Insert(Idx: Integer; const TabText:
KOLString; TabImgIdx: Integer): PControl;

TC_Delete procedure TC_Delete(Idx: Integer);

TC_InsertControl
procedure TC_InsertControl(Idx: Integer; const
TabText: KOLString; TabImgIdx: Integer; Page:
PControl);

TC_Remove function TC_Remove(Idx: Integer): PControl;

TC_SetPadding procedure TC_SetPadding(cx, cy: Integer);

TC_TabAtPos function TC_TabAtPos(x, y: Integer): Integer;

TC_DisplayRect function TC_DisplayRect: TRect;

TC_IndexOf
function TC_IndexOf(const S: KOLString):
Integer;

TC_SearchFor
function TC_SearchFor(const S: KOLString;
StartAfter: Integer; Partial: Boolean): Integer;

ImageListNormal property ImageListNormal: PImageList;

Pages property Pages[Idx: Integer]: PControl;

TC_Pages property TC_Pages[Idx: Integer]: PControl;

TC_Items property TC_Items[Idx: Integer]: KOLString;

TC_Images property TC_Images[Idx: Integer]: Integer;

TC_ItemRect property TC_ItemRect[Idx: Integer]: TRect;

5.26.27 Function NewForm

function NewForm(AParent: PControl; const Caption: KOLString): PControl;

Creates form window object and returns pointer to it. If You use only one form, and You are not

going to do applet button on task bar invisible, it is not necessary to create also special applet

button window - just pass your (main) form object to Run procedure. In that case, it is a good

idea to assign pointer to your main form object to Applet variable immediately following

creating it - because some objects (e.g. TTimer) want to have Applet assigned to something.

Following methods, properties and events are useful to work with forms (ones common for all

visual objects, such as Left, Top, Width, Height, etc. are not listed here - look TControl for it):

OnMessage property OnMessage: TOnMessage;

OnClose property OnClose: TOnEventAccept;

369

369

368

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Visual objects - Syntax

OnMessage property OnMessage: TOnMessage;

OnQueryEndSession property OnQueryEndSession: TOnEventAccept;

OnMinimize property OnMinimize: TOnEvent;

OnMaximize property OnMaximize: TOnEvent;

OnRestore property OnRestore: TOnEvent;

OnFormClick property OnFormClick: TOnEvent;

ParentForm function ParentForm: PControl;

FormParentForm function FormParentForm: PControl;

CreateWindow function CreateWindow: Boolean; virtual;

Close procedure Close;

IconLoad
procedure IconLoad(Inst: Integer; ResName:
PKOLChar);

IconLoadCursor
procedure IconLoadCursor(Inst: Integer; ResName:
PKOLChar);

Show procedure Show;

ShowModal function ShowModal: Integer;

Hide procedure Hide;

MinimizeNormalAnimated procedure MinimizeNormalAnimated;

RestoreNormalMaximized procedure RestoreNormalMaximized;

IsMainWindow function IsMainWindow: Boolean;

GotoControl procedure GotoControl(Key: DWORD);

RemoveStatus procedure RemoveStatus;

StatusPanelCount function StatusPanelCount: Integer;

CenterOnCurrentScreen function CenterOnCurrentScreen: PControl;

Icon property Icon: HIcon;

Caption property Caption: KOLString;

ModalResult property ModalResult: Integer;

Modal property Modal: Boolean;

ModalForm property ModalForm: PControl;

WindowState property WindowState: TWindowState;

HasBorder property HasBorder: Boolean;

HasCaption property HasCaption: Boolean;

CanResize property CanResize: Boolean;

StayOnTop property StayOnTop: Boolean;

Border property Border: ShortInt;

369

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Visual objects - Syntax

OnMessage property OnMessage: TOnMessage;

Margin property Margin: ShortInt;

AlphaBlend property AlphaBlend: Byte;

StatusText property StatusText[Idx: Integer]: KOLString;

SimpleStatusText property SimpleStatusText: KOLString;

StatusPanelRightX
property StatusPanelRightX[Idx: Integer]:
Integer;

StatusWindow property StatusWindow: HWND;

5.26.28 Function NewApplet

function NewApplet(const Caption: KOLString): PControl;

Creates applet button window, which has to be parent of all other forms in your project (but this

is *not must*). See also comments about NewForm .

Following methods, properties and events are useful to work with applet control:

Run procedure Run(var AppletCtl: PControl);

OnMessage property OnMessage: TOnMessage;

Close procedure Close;

IconLoad
procedure IconLoad(Inst: Integer; ResName:
PKOLChar);

IconLoadCursor
procedure IconLoadCursor(Inst: Integer; ResName:
PKOLChar);

Show procedure Show;

Hide procedure Hide;

IsMainWindow function IsMainWindow: Boolean;

ProcessMessage function ProcessMessage: Boolean;

ProcessMessages procedure ProcessMessages;

ProcessPendingMessages procedure ProcessPendingMessages;

Icon property Icon: HIcon;

Caption property Caption: KOLString;

ModalForm property ModalForm: PControl;

367

370

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Window Objects
Visual objects - Syntax

5.26.29 Function NewMDIClient

function NewMDIClient(AParent: PControl; WindowMenu: THandle): PControl;

Creates MDI client window, which is a special type of child window, containing all MDI child

windows, created calling NewMDIChild function. On a form, MDI client behaves like a panel,

so it can be placed and sized (or aligned) like any other controls. To minimize flick during

resizing main form having another aligned controls, place MDI client window on a panel and

align it caClient in the panel.

Note: MDI client must be a single on the form.

5.26.30 Function NewMDIChild

function NewMDIChild(AParent: PControl; const ACaption: KOLString):
PControl;

Creates MDI client window. AParent should be a MDI client window, created with

NewMDIClient function.

5.26.31 Function NewDateTimePicker

function NewDateTimePicker(AParent: PControl; Options:
TDateTimePickerOptions): PControl;

Creates date and time picker common control.

370

370

Graphic Visual Elements

This chapter will briefly discuss graphical, i.e. windowless counterparts of some window
objects that do not have window descriptors.

372

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Graphic Visual Elements

6 Graphic Visual Elements

Graphic (Not Windowed) Visual Elements

This chapter will briefly discuss graphical, i.e. windowless counterparts of some window

objects that do not have window descriptors. Surprising as it may seem, there is a much wider

range of such objects in KOL than in VCL. In addition to the label and drawer, the KOL library

provides graphical counterparts for buttons, check boxes and radio boxes, and even for a single-

line edit box.

As you know, the main purpose of graphic controls is to reduce the load on the system in the

case when the form contains a very large number of visual elements. For example, if you try to

implement the game "Miner" for a field of 50x50 cells, depicting cells with ordinary buttons,

then you should expect a sharp drop in the performance of even a very powerful computer

when you run such an application. (Of course, nobody does that, this example is rather abstract).

Of course, it is always possible in each individual application to independently draw the

necessary elements, which do not necessarily repeat the appearance of the simulated visual

objects, the same buttons or checkboxes. Sometimes you can go the route of changing the

interface to use lists or trees, if this is appropriate for the conditions of the problem being

solved. And yet there are still cases when none of these approaches suits, and it is precisely a

certain set of analogs of standard visual objects that is required.

This is what graphic visual objects are for. Unlike their windowed prototypes, graphical

counterparts do not require a window handle (and do not have their own window at all). They

draw themselves, without the participation of the operating system, in the procedure for

drawing their window parent, which acts as an underlay.

In particular, this means that graphical visual objects provide a richer set of possibilities for

modifying their appearance on the part of the developer than their window counterparts. For

example, a regular button in Windows does not allow you to change its color or the font color of

its label, and the same applies to checkboxes, which, in fact, are also buttons. [I don't know,

honestly, why such a restriction is needed. This leads to the fact that the programmer people,

trying to make their interface a little less gray and monotonous, instead of standard buttons start

using self-colored buttons, and then it all starts to look worse when XP themes are turned on. In

any case, this question should be asked by the developers of the Windows operating system].

For a graphic button, such a restriction on colors is not relevant. In addition, graphics controls in

KOL have a number of additional event handlers that allow you to intervene in the drawing

process at any stage of the redrawing process in order to provide the desired appearance.

Namely, in addition to OnPaint, which allows you to replace the entire main drawing procedure,

and OnEraseBkgnd, which replaces the background erasing procedure, there are also

OnPrePaint and OnPostPaint. These handlers allow you to fix something before starting the main

drawing (for example, change the font style, or draw some parts of the image and exclude them

from the drawing area), or fix something (do overdrawing) after the main drawing is done.

373

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Graphic Visual Elements

When developing graphic visual objects for the KOL library, it is possible to correlate them with

XP themes. Moreover, in order for these objects to look "like real", it is enough to include one

or two more conditional compilation symbols (depending on how much you agree to increase

the size of the application, or keep the size small, at the expense of some of the believability).

In the case of using MCK, in order for the window object to be replaced by a graphical one, it is

enough to set the Windowed property to false. In this case, however, you should not forget to

add the conditional compilation symbol USE_GRAPHCTLS to the project properties so that all

the necessary declarations become available to the compiler (the addition of this symbol itself,

even without the actual use of graphic controls, increases the size of the application by a

hundred bytes).

For manual programming in KOL, you should create graphical interface elements specifically for

this purpose with dedicated design functions. The addition of the USE_GRAPHCTLS symbol is,

of course, mandatory in this case too.

· Graphic Label

· Graphic Canvas for Drawing

· Graphic Button

· Graphic Flags

· Graphic Input Field

· XP Themes

6.1 Graphic Label

The first (but not the last) graphic visual is the label, i.e. a field containing some text to be

displayed on the form. Graphic labels constructors:

NewGraphLabel(Parent, Caption)
NewGraphWordWrapLabel(Parent, Caption)

The object created in this constructor is the same PControl as other visual objects. You can still

change its position, size, set alignment. But the properties and methods that exploit the window

handle turn out to be inapplicable. For example, many event handlers like OnMessage cannot

be used for it. OnClick, OnMouseXXXX (as well as OnKeyXXXX and OnChar - for "focused"

graphic controls, see below) remain guaranteed to be available. These events are specially

simulated in the window parent's message handler so that the basic behavior of the graphics

controls remains the same.

373

374

374

375

375

376

374

374

374

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Graphic Visual Elements
Graphic Label

Syntax

function NewGraphLabel(AParent: PControl; const ACaption: AnsiString):
PControl;

Creates graphic label, which does not require a window handle.

function NewWordWrapGraphLabel(AParent: PControl; const ACaption:
KOLString): PControl;

Creates graphic label, which does not require a window handle.

6.2 Graphic Canvas for Drawing

Unlike its window counterpart (paintbox), a graphics box with pictures does not have its own

window handle, and uses the parent window handle, like all other graphic visual elements. In

particular, the graphic “artist's box” can no longer function as a regular panel and become a

parent for other visual elements. Actually, there are no other differences, if we consider its basic

functionality. The functionality of this element is all concentrated in the presence of the OnPaint

event, and it works in much the same way as for the window twin.

6.3 Graphic Button

But there is no such analogue of the button in the VCL anymore. In KOL, a graphical button

exactly repeats the appearance and functionality of a regular button (and even slightly poorer,

considering that a window button in KOL can contain an icon instead of text). This is not an

analogue of TBitbtn from the VCL (which also holds its own window handle), and not an

analogue of TSpeedButton (since it can capture input focus), namely, an analogue of TButton,

but without a window handle. In particular, this means that you can already do "Miner" on the

graphic buttons without fear of the consequences associated with poor performance or even a

crash of the operating system and applications running in parallel in the case of a very large

number of such buttons.

As you know, the main functionality of a button is its ability to be "pressed" by a manipulator of

the "mouse" type and to call the OnClick handler associated with this event, if any. In addition,

the button must be able to be in focus (changing its appearance slightly, usually by adding a

dotted border inside the button), and then such a visual button can be "pressed" from the

keyboard. This is probably why the graphical analogue of the button was not created in the VCL,

because there is a problem with transferring focus to an object that cannot have focus by

definition, simply because this object does not have a window handle. In KOL, this problem is

solved by simulating focus: the focus actually belongs to the parent window object, but this

object "knows"

Graphic button constructor:
NewGraphButton(Parent, Caption) 375

375

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Graphic Visual Elements
Graphic Button

Syntax

function NewGraphButton(AParent: PControl; const ACaption: KOLString):
PControl;

Creates graphic button.

6.4 Graphic Flags

On Windows, check boxes (check boxes and radio boxes) are flavors of a button. This is not

surprising since their basic functionality is about the same, namely the ability to be pressed with

a mouse or keyboard. There are also graphical analogs for these objects in KOL. And in their

graphical incarnation, it is these objects that turn out to be most useful for facilitating the

descriptor "weight" of all kinds of configuration dialogs, in which there can be hundreds of flags.

Constructors:
NewGraphCheckBox(Parent, Caption)

NewGraphRadioBox(Parent, Caption)

To catch a click, these objects also use the OnClick event, and the "checked" state is read and

written through the Checked properties and the SetRadioChecked method, just like for their

window prototypes.

Syntax

function NewGraphCheckBox(AParent: PControl; const ACaption: KOLString):
PControl;

Creates graphic checkbox.

function NewGraphRadioBox(AParent: PControl; const ACaption: KOLString):
PControl;

Creates graphic radiobox.

6.5 Graphic Input Field

In fact, the one-line input field is the last visual object for which it would have made any sense to

create a graphical counterpart. It makes no sense to move further, since the increase in the code

will outweigh all the benefits of the absence of its own window descriptor.

But already when implementing a graphical input field, a simple trick was used to avoid

duplicating the functionality of the input field itself in your code. Namely: when the focus is

transferred to this element, a temporary (until the focus is lost), but "real" window object for line

editing, which visually practically does not differ, is created for it, has the same borders, and

allows you to edit the text as usual. The substitution process itself occurs in a completely

transparent way for the user (and for the application), and is visually invisible.

375

375

376

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Graphic Visual Elements
Graphic Input Field

The benefits of using a graphical input field are the same as those of other types of graphical

elements. It should be noted that a form with fifty such fields, if they do not have window

descriptors, works much faster, which is noticeable even on a very high-speed hardware

configuration.

Constructor:
NewGraphEditBox(Parent, Options)

Syntax

function NewGraphEditbox(AParent: PControl; Options: TEditOptions):
PControl;

Creates graphic edit box. To do editing, this box should be replaced with real edit box with a

handle (actually, it is enough to place an edit box on the same Parent having the same

BoundsRect).

6.6 XP Themes

XP Themes for Graphic Controls and more...

If the application is being developed with XP themes in mind, i.e. it is supposed to use a

manifest that radically changes the appearance of the application when it is running in the

operating system XP or Vista, then KOL provides the ability to draw graphical elements "to the

theme". But by default, to make the code easier, this feature is disabled.

Initially, the conditional compilation symbol GRAPHCTL_XPSTYLES was introduced in order for

graphical visuals to portray themselves in accordance with current XP themes. As a result, code

was added to the final application that was responsible for rendering all the above graphic

controls in accordance with the current theme. At the same time, if the user turned off the

desktop themes, the drawing was performed with the same algorithm.

Later, the effect of the GRAPHCTL_XP_STYLES symbol was significantly extended, thanks to the

MTsv DN (this is the developer's alias). Now, when you enable it in the project options, a rather

considerable amount of code (about 10 KB) from the visual_xp_styles.inc file is connected to

the application, which is responsible for the correct display of ordinary controls, including for the

group box - with enabled themes, as well as when switching themes ...

But this may not be enough to completely match the appearance. The fact is that as soon as

themes are enabled, the appearance of the controls of all applications that support the manifest

begins to change dynamically when the mouse cursor moves over them. In order for this

behavior to be reflected for graphic controls, you should add one more conditional compilation

symbol: GRAPHCTL_HOTTRACK.

376

Non-Visual Objects

Menus, Dialogs for choosing a file or folder name, Clocks, Execution Threads

378

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Non-Visual Objects

7 Non-Visual Objects

Non-Visual Objects KOL and MCK

This concludes the description of the main visual objects of KOL, which are window and pseudo-

window objects (i.e. controls). Those "controls" that have already been described are already

quite enough to implement a decent enough visual interface. But for a full-fledged application

development, a certain set of auxiliary objects is still lacking for solving a number of common

tasks, such as: menus, dialogs for choosing a file or folder name, clocks, execution threads.

All such objects are inherited directly from TObj, i.e. are simple objects. But, at the same time,

for all of them there are mirror components in the Mirror Classes Kit, allowing them to be used

in visual design. That is, they can be thrown onto the form and set up the desired properties and

events. As a result, code is automatically generated that ensures the creation of the

corresponding objects along with the form, and their destruction along with the destruction of

the form object.

· Menu (TMenu)

o Events for the entire menu or its child items

o Events, methods, properties of an individual menu item as an object

o Access to properties of subordinate menu items

o Main menu

o Pop-up menu

o Accelerators

o Menu at MCK

o Menu - Syntax

· Tray Icon (TTrayIcon)

o Tray Icon - Syntax

· File Selection Dialog (TopenSaveDialog)

o File Selection Dialog - Syntax

· Directory Selection Dialog (TOpenDirDialog)

o Directory Selection Dialog - Syntax

· Alternative Directory Selection Dialog (TOpenDirDialogEX)

o Alternative Directory Selection Dialog - Syntax

· Color Selection Dialog (TColorDialog)

o Color Selection Dialog - Syntax

· Clock (TTimer)

o Multimedia Timer (TMMTimer)

o Clock - Syntax

· Thread, or thread of commands (TThread)

379

381

382

383

383

384

385

385

386

394

395

397

399

401

403

404

407

409

410

411

413

414

416

379

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Non-Visual Objects

o Thread - Syntax

· Action and ActionList

o Action and ActionList - Syntax

7.1 Menu (TMenu)

First on the list of non-visual objects, I decided to describe the menu. Although the "non-

visibility" of this object is quite possible to question. The main menu is a completely visual

element of the form, although it does not have its own window descriptor (of course, the menu

has descriptors, but they are not window descriptors).

Moreover, the main menu is displayed on the form, including at the design stage, allowing you

to create event handlers (and quickly jump into their code) when you select the appropriate item

in the menu. Note: however, unlike VCL, to create new main menu items, or to move items, in

MCK you should use the menu editor, which is invoked by double clicking on the mirrored

component.

In the KOL library, the main menu, the popup menu, and the menu items are all implemented in

one TMenu object, keeping the tradition of saving on a variety of objects. The menu builder

uses a list-of-strings-based templating technique, similar to the one used for the toolbar.

Historically, the menu was developed earlier than the line of buttons, and this method of

economical construction of multi-element objects was used for the first time precisely to build a

menu tree. Digging even deeper, this object first appeared in XCL, the predecessor of KOL, and

little has changed since then.

When you create the first menu and assign it to a form, this menu object is automatically made

the main menu for the form (and if it has at least one item, it is displayed at the top of the form).

All subsequent menu objects added to the form become popups and are not displayed until

either the Popup or PopupEx method is called programmatically or automatically

(SetAutoPopupMenu) for them. In particular, if the form should not have a main menu, but it has

one or more pop-up menus, then the first step is to add a dummy main menu that does not

have displayed elements.

419

424

425

380

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Non-Visual Objects
Menu (TMenu)

Constructors:

NewMenu(Parent, dummy, template, onmenu) - constructs a menu based on the specified

template, adding it to the form specified by the Parent parameter;

NewMenuEx(Parent, dummy, template, onitems_array) - similar to the previous function, but

allows you to assign your own event handlers for all or part of the menu items at once.

The dummy parameter was retained for compatibility with the first versions of KOL when it was

used and named maxcmdreserve (and then firstcmd). Since the menu for each item began to

create its own instance of the TMenu object, the need for this parameter has disappeared.

The rules for constructing a template template should be discussed in more detail. Template is

an array of strings (of type PChar) that define for menu items:

· their appearance (text, mnemonics, accelerators);

· mode of operation (normal, separator, switchable, groupable radio switch, initial state of the

switch).

To specify all these features, prefix characters in strings are used:

'&' The character before the letter or number that becomes the mnemonic of

the menu item. The mnemonic is displayed with an underline (in newer

versions of the OS, by default, the underline is shown only when the Alt key is

pressed), and allows you to invoke a menu from the keyboard. Let me

remind you that in order for the KOL application to be able to use

mnemonics in the menu without first activating the menu itself, you must

provide a call to the SupportMnemonics method;

'+' The menu item is "marked" with a special checkmark. For radio-toggled

menu items, a circle is used instead of a checkmark. If such a prefix is

specified before the text of an element, then the element becomes

automatically switchable. In this case, when a user selects a menu item, it

automatically changes its state from "checked" to "not checked". If the prefix

'+' (or '-', see below) is followed by a '!', Then the menu item is radio

switchable. The system combines several consecutive radio switches into one

group automatically (there should not be other types of menu items between

them);

'-' The menu item is "unchecked", but otherwise everything said about the '+'

prefix is also true for '-';

'-' If the text of an element consists of a single minus, then the element is a

separator (and is shown in the menu as a narrow line between groups of

regular menu elements). The separator is always not selectable, and

therefore it doesn't make sense to assign an OnMenu event handler to it;

'(' Starts a submenu subordinate to the previous menu item;

')' Ends the submenu, returning to the previous nesting level.

In the NewMenuEx constructor, as well as in the AssignEvents method, when events from an

array parameter are assigned to menu items, separators and template elements '(' and ')' are not

taken into account (skipped).

387

387

381

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Non-Visual Objects
Menu (TMenu)

Properties, methods and events of the TMenu object:

Handle - menu descriptor. The menu itself and any of its elements (including separators) have

such a descriptor. This descriptor is a number (of the hMenu type) known to the system, and

allows you to call API functions to perform some kind of action on the menu at a low level. For

example, a menu, along with all its submenus, can be passed as a parameter to the

TrackPopupMenu and TrackPopupMenuEx functions to "pop up" the menu with any additional

display styles;

SubMenu - descriptor of the subordinate menu. In fact, equivalent to Handle;

MenuID - internal numerical "identifier" of the menu item, assigned by the KOL code. Because

the number of available identifiers cannot exceed 65535, and these identifiers cannot be reused,

then you should not constantly create and delete menu items too often during long-term work.

In particular, you should not make them "hidden", because hiding and showing menu items is

implemented exactly as destruction and creation of new items (in Windows there is no way to

hide menu items in a different way). Instead, it is recommended to use the ability to make menu

items unavailable or available (enabled) as needed;

Insert(i, s, event, options) - adds a new menu item (creating another TMenu object

corresponding to the newly created menu item, and returning a PMenu pointer to this object;

Parent - parent menu (if available);

TopParent - top-level parent menu;

Owner - an object of type TControl to which this menu belongs (must be a form);

Items[i]- subordinate menu items (including nested menu items, including separators). The i

parameter can be the absolute index of the nested element with a value between 0 and 4096, or

a numeric ID descriptor. A value of -1 returns the menu item itself (itself);

Count - the number of subordinate menu items, including recursively nested items;

IndexOf(s) - returns the index of the subordinate menu item (including nested items of any

level), searching for it by the text s. A value of -1 is returned for the menu item itself, and -2 if no

such menu item is found;

InsertSubMenu(submenu, i) - allows you to add a previously prepared menu as an element of

this menu, along with all its subordinate elements;

RemoveSubmenu(i) - detaches a subordinate menu added, for example, by the InsertSubMenu

method;

AddItem(s, event, options) - adds a menu item to the end of the list;

InsertItem(i, s, event, options) - inserts a menu item at the specified position;

AssignBitmaps(i, bitmaps) - allows you to assign several bitmaps at once to menu items,

starting with a given one;

7.1.1 Events for the entire menu or its child items

OnMenuItem - an event that is triggered for a menu object when an element is selected in it.

When a menu item is selected, such an event (if assigned) is triggered for the menu item itself,

and for each parent menu. This approach allows, if desired, to save on the creation of separate

event handlers for each menu item, and to concentrate all the processing of clicks on the menu

in one procedure, assigning it as a handler for clicks on the parent menu of the highest level;

382

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Non-Visual Objects
Menu (TMenu)

ByAccel - this property can be interrogated in the menu handler to determine whether the

menu item was "clicked" by the coordinate device (mouse or its substitute), or selected using a

shortcut key. Note: accelerator is an accelerator, accelerators should not be confused with

mnemonics, they are different mechanisms;

IsSeparator - returns true if item is a separator;

OnUncheckRadioItem - this event allows you to assign an additional event handler "the current

element of the radio group is no longer current". The aforementioned OnMenuItem event fires

only for the radio group item in the menu that has been selected;

AssignEvents(i, events) - allows you to assign event handlers for several menu items, starting

with i;

7.1.2 Events, methods, properties of an individual menu item as an object

The events, methods and properties listed below relate primarily to each individual menu item

without affecting the entire menu tree or subordinate items of this menu item. To access such

properties from code, you must have a pointer to the object corresponding to the menu item.

For example, such a pointer can be obtained for the main menu using the Items [i] property. If

the composition of the menu changes dynamically, the best way is immediately after the initial

creation of the menu and before performing any modifications to the menu (i.e. when its index

is precisely known for each menu item) to copy the pointers of those menu items to which the

program code contains calls to their variables (like PMenu).

OnMeasureItem - an event that is called for a menu item with the OwnerDrawFixed option to

set the size of the menu (in the lower word of the result, the handler must return the height, in

the upper word - the width of the menu item);

OnDrawItem - an event for drawing a menu item by a handler assigned by the programmer.

The menu must have the OwnerDraw property equal to true;

OwnerDraw - the OnDrawItem event handler is called for displaying menu items;

Caption - Menu item caption text (including '&' indicating mnemonic characters, and keyboard

accelerator representation string, usually following tabulation character).

MenuBreak - the type of separation of this menu item from subsequent ones (for automatic

transfer of menu items to the next line or column);

RadioGroup - radio group index. Several consecutive menu items with the same RadioGroup

property value form a single group of toggle items, in which only one item can be "checked";

IsCheckItem - the menu item is automatically tagged. By choosing such an item in the menu,

the user automatically changes his states "marked" - "not marked" to the opposite (before the

OnMenuItem event is triggered);

Checked - the menu item corresponding to the object is "marked";

Enabled - the object menu item is allowed (if not, then the menu item becomes pale and

unavailable for selection by the user, i.e. the OnMenuItem event will never occur for it while it is

in this state);

DefaultItem - the menu item is the "default" item, i.e. it is visually highlighted (in bold) and is

triggered by pressing the <Enter> key when the parent menu is displayed on the screen along

with its children;

Highlight - the menu item is highlighted;

383

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Non-Visual Objects
Menu (TMenu)

Visible - property of the object corresponding to the menu item. The object makes the given

menu item "visible" by destroying the menu item when this property is set to false and re-

creating it when the property is set to true again;

Data - a pointer that allows you to associate some additional data with a menu item (including, it

can be any 32-bit number);

Bitmap - the hBitmap bitmap used to display the icon to the left of the text in the menu (in the

same place where the system displays a "bird" or a marking circle for "marked" menu items);

BitmapItem - the bitmap hBitmap, rendered in place of the menu text, if assigned. There are a

number of reserved system constants that can optionally be used as a value for this property.

For example, HBMMENU_CALLBACK - allows you to organize the substitution of the required

image by an additional request from the system, as well as: HBMMENU_MBAR_CLOSE,

HBMMENU_MBAR_MINIMIZE, etc .;

Accelerator - "accelerator", or a keyboard shortcut that can be used to invoke a menu item. The

accelerator is created in code by calling the MakeAccelerator function;

HelpContext - a number that is used in the embedded help system of the application to identify

the article in the help, which is activated when requesting contextual help for the menu item (F1);

7.1.3 Access to properties of subordinate menu items

Access to properties of subordinate menu items (by index or numeric identifier)

All the properties of this group are just another (equivalent) way to access the properties of

individual menu items.

GetMenuItemHandle(i) and ItemHandle [i] - returns the numeric identifier of the menu item

(see MenuID);

ItemChecked[i]- the menu item "marked". Do not use this property to "check" a radio group

item to toggle menu items, use the RadioCheck property for that;

ItemEnabled[i] - the menu item is available;

ItemVisible[i]- the menu item is visible. See the note on the Visible property - everything said

for it is the same for this property, because it is actually another way to refer to this property;

RadioCheck(i) - makes the menu item included in the group of radio-switchable menu items

"marked", while removing the marking from all other items in this group;

ItemBitmap[i] - a bitmap to display to the left of the text in a menu item;

ItemHelpContext[i] - the context of the help system;

ItemAccelerator[i] - accelerator (keyboard shortcut) for quick access to a menu item;

ItemSubMenu[i] - descriptor of the parent menu item;

7.1.4 Main menu

RedrawFormMenuBar - for the main menu, this call provides an update of the image of the

main menu bar after making any modifications in it. If such a call is not made, then the menu

itself is not updated.

Sometimes the main menu uses a special visual effect of aligning one or more of the last top-

level items of the main menu to the right. To achieve this effect, just run the following code:

384

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Non-Visual Objects
Menu (TMenu)

i: = MainMenu1.ItemHandle [mmAbout];
ModifyMenu (MainMenu1.Handle, i,
MF_BYCOMMAND or mf_Help,
i,
PChar (MainMenu1.ItemText [mmAbout]));

7.1.5 Pop-up menu

As already noted, pop-up menus in KOL are no different from the main one (except for the

order in which they are created). But in order to display them, they must be ordered to "pop

up", or by using the SetAutoPopupMenu method of any visual object on the form, an

additional handler to the window that will execute such an order when the user performs certain

actions (pressing a special button on the keyboard or the right mouse button) ...

Popup(X, Y) - makes a popup menu appear at the specified coordinates on the screen;

PopupEx(X, Y) - similar to the previous method, but behaves in a special way if the window of

the parent form is invisible on the screen at that moment. Namely, it makes it visible (Visible =

true), but takes it out of the screen for a while, effectively leaving it invisible to the user. The

point of this "forgery" is to ensure that the pop-up menu is automatically hidden correctly when

it "loses" focus, more precisely, when any other window is in focus. It is advisable to use this

method when organizing the pop-up menu on the "tray icon" (see TTrayIcon), otherwise the

pop-up menu does not "guess" in any way that it is time to hide if the user clicks past the menu.

(Usually, the user does this if he decided that he does not want to select any of the items of such

a menu, and wants to do something else, and here is the menu,

Flags - allows you to define a set of flags that will be used in the Popup and PopupEx methods

as a parameter for the TrackPopupMenuEx API function. With the help of these flags it is

possible to change such parameters as alignment and placement on the screen, permission to

click on menu items with the right mouse button, animation method;

OnPopup - this event is triggered immediately before displaying a pop-up menu, or before

expanding child menu items (when the mouse is hovering or moving the cursor to a menu item

that has child items). In the handler of this event, it is allowed, inter alia, to change the

composition, availability or some other states of individual subordinate items, depending on any

external conditions. Among other things, it is possible to set the value of the NotPopup property

to true, thereby preventing the "popup";

NotPopup - setting this property to true prevents the popup menu from popping up, or

expanding the list of subordinate menu items;

CurCtl - a pointer to a window object of the PControl type, which initiated the automatic popup

of the menu (since its handler of the corresponding window message, attached to it by calling

SetAutoPopupMenu, triggered).

385

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Non-Visual Objects
Menu (TMenu)

7.1.6 Accelerators

To conclude our discussion of menus in KOL, we need to supplement information on

accelerators (keyboard shortcuts) that are used to invoke menu items from the keyboard. These

keyboard shortcuts are automatically displayed to the right of the text in the menu when the

Accelerator or ItemAccelerator [i] property is used to assign them. In fact, their text is simply

added to the text of the menu through the tabulator character (and the system already provides

the alignment of such additional columns after the tabulation character # 9). Note: if you want to

place a non-standard text designation of the accelerator to the right of the menu text in this

position, or list several keyboard shortcuts that cause the same action, you just need to change

the menu text yourself using this menu feature.

Accelerator, i.e. a keyboard shortcut can be generated by calling the global function

MakeAccelerator (Virt, Key), where Virt is a combination of the FSHIFT, FCONTROL, FALT,

FVIRTKEY, FNOINVERT flags, and Key is a character or virtual key code.

You can get some "standard" text corresponding to the accelerator using the

GetAcceleratorText (acc) function. In fact, this function forms the text itself using the

GetKeyNameText API function. If the resulting text does not suit you, you can use your own.

7.1.7 Menu at MCK

For convenient visual design of menus in MCK projects, the mirror components

TKOLMainMenu and TKOLPopupMenu have been developed. With the help of the editor of

these components (called by double clicking on the component on the form), it is possible to

add, remove, move menu items. When you select items in the displayed menu tree, this

provides the ability to edit the properties of individual menu items in the Object Inspector.

I will pay special attention to the constants that MCK forms by default for menu items. This, in

fact, is a very convenient tool for accessing menu items (and sometimes you still have to access

them, for example, to check their Checked state). In my opinion, it is obvious that the line of

code
if MainMenu1.ItemChecked [mmOptionOne] then ...

is significantly more informative (and will be correct even after any changes in the menu design!)

than
if MainMenu1.ItemChecked [12] then ...

(Or do you think it is not?).

However, if the form uses several different menu components, and the menu items in them

remain named N1, N2, ..., i.e. Since the names that were assigned initially have been preserved,

then when trying to compile the code, a problem will arise due to the repeated definition of the

same constants.

For menu mirrors, MCK has properties generateConstants (by default, true, that is, generate)

and generateSeparatorConstants (by default, false). The second property was introduced to

prevent MCK menu mirrors from generating such constants for separators in the menu. Usually

386

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Non-Visual Objects
Menu (TMenu)

there is no need to name separators, although there is a situation when you need to refer to the

properties of a separator item (for example, its Visible property).

You can also disable the generation of constants for other items, but if you need to access the

properties of menu items in dynamics, then it's better to just rename them.

7.1.8 Menu - Syntax

type TMenuitemInfo = packed record
 cbSize: UINT;
 fMask: UINT;
 fType: UINT; { used if MIIM_TYPE}
 fState: UINT; { used if MIIM_STATE}
 wID: UINT; { used if MIIM_ID}
 hSubMenu: HMENU; { used if MIIM_SUBMENU}
 hbmpChecked: HBITMAP; { used if MIIM_CHECKMARKS}
 hbmpUnchecked: HBITMAP; { used if MIIM_CHECKMARKS}
 dwItemData: DWORD; { used if MIIM_DATA}
 dwTypeData: PKOLChar; { used if MIIM_TYPE}
 cch: UINT; { used if MIIM_TYPE}
 hbmpItem: HBITMAP; { used if MIIM_BITMAP }
 end;

const
 TPM_HORPOSANIMATION = $0400;
 TPM_HORNEGANIMATION = $0800;
 TPM_VERPOSANIMATION = $1000;
 TPM_VERNEGANIMATION = $2000;
 TPM_NOANIMATION = $4000;

type PMenu = ̂ TMenu;

type TOnMenuItem = procedure(Sender: PMenu; Item: Integer) of object;

Event type to define OnMenuItem event.

type TMenuAccelerator = packed Record

 fVirt: Byte; or-combination of FSHIFT, FCONTROL, FALT, FVIRTKEY, FNOINVERT

 Key: Word; character or virtual key code (FVIRTKEY flag is present above)

 NotUsed: Byte; not used
end;

Menu accelerator record. Use MakeAccelerator function to combine desired attributes into a

record, describing the accelerator.

type TMenuOption =(moDefault, moDisabled, moChecked, moCheckMark, moRadioMark,
moSeparator, moBitmap, moSubMenu, moBreak, moBarBreak);

Options to add menu items dynamically.

type TMenuOptions = set of TMenuOption ;

Set of options for menu item to use it in TMenu.AddItem method.

390

386

387

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Non-Visual Objects
Menu (TMenu)

type TMenuBreak =(mbrNone, mbrBreak, mbrBarBreak);

Possible menu item break types.

function MenuStructSize: Integer;

Returns 44 under Windows95, and 48 (=sizeof(TMenuItemInfo) under all other Windows

versions.

Constructors:

function NewMenu(AParent: PControl; MaxCmdReserve: DWORD; const Template: array of

PKOLChar; aOnMenuItem: TOnMenuItem): PMenu;

Menu constructor. First created menu becomes main menu of form (if AParent is a form). All

other menus becomes popup (can be activated using Popup method). To provide dynamic

replacing of main menu, create all popup menus as children of any other control, not form itself.

When Menu is created, pass FirstCmd integer value to set it as ID of first menu item (all other

ID's obtained by incrementing this value), and Template, which is an array of PChar (usually array

of string constants), containing list of menu item identifiers and/or formatting characters.

FirstCmd value is assigned to first menu item created as its ID, all follow menu items are

assigned to ID's obtained from FirstCmd incrementing it by 1. It is desirable to provide not

intersected ranges of ID's for different menus in the applet.

Following formatting characters can be used in menu template strings:

· & (in identifier) - to underline next character and use it as a shortcut character when possible;

· + (in front of identifier) - to make item checked. If also ! is used before & than radioitem is

defined;

· - (in front of identifier) - item not checked;

· - (separate) - separator (between two items);

· ((separate) - start of submenu;

·) (separate) - end of submenu;

To get access to menu items, use constants 0, 1, etc. It is a good idea to create special

enumerated type to index correspondent menu items using Ord() operator. Note in that case,

that it is necessary only to define constants correspondent to identifiers (positions,

correspondent to separators or submenu brackets are not identified by numbers).

function NewMenuEx(AParent: PControl; FirstCmd: Integer; const Template: array of PKOLChar; aOnMenuItems: array of TOnMenuItem): PMenu;

Creates menu, assigning its own event handler for every (enough) menu item.

Properties, Methods and Events

property Handle : HMenu;
Handle of Windows menu object.

386

386

388

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Non-Visual Objects
Menu (TMenu)

property MenuId: Integer;

Id of the menu item object. If menu item has subitems, it has also submenu Handle. Top parent

menu object itself has no Id. Id-s areassigned automatically starting from 4096. Do not (re)create

menu items instantly, because such values are not reused, and maximum possible Id value must

not exceed 65535.

property Parent: PMenu ;

Parent menu item (or parent menu).

property TopParent: PMenu ;

Top parent menu, owning all nested subitems.

property Owner: PControl;

Parent control or form.

property Caption: KOLString;

Menu item caption text (including '&' indicating mnemonic characters, and keyboard accelerator

representation string, usually following tabulation character).

property Items[Id: HMenu]: PMenu;

Returns menu item object by its index or by menu id. Since menu id values are starting from

4096, values from 0 to 4095 are interpreted as absolute index of menu item. Be careful

accessing menu items or submenus by index, if you dynamically insert or delete items or

submenus. In this version, separators are enumerating too, like all other items. Use index -1 to

access object itself. The first item of a menu (or the first subitem of submenu item) has index 0.

Children are enumerating before all siblings. The maximum available index is (Count - 1), when

accessing menu items by index.

property Count: Integer;

Count of items together with all its nested subitems.

function IndexOf(Item: PMenu): Integer;

Returns index of an item. This index can be used to access menu item. Value -2 is returned, if the

Item is not a child for menu or menu item, and has no parents, which are children for it, etc.

Menu object itself always has index -1.

property OnMenuItem : TOnMenuItem;

Is called when menu item is clicked. Absolute index of menu item clicked is passed as the second

parameter. TopParent always is passed as a Sender parameter.

property ByAccel: Boolean;

True, when OnMenuItem is called not by mouse, but by accelerator key. Check this flag for

entire menu (TopParent), not for item itself.

(Note, that Sender in OnMenuItem always is TopParent menu object).

386

386

386

388

388

389

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Non-Visual Objects
Menu (TMenu)

property IsSeparator: Boolean;

TRUE, if a separator menu item.

property MenuBreak: TMenuBreak ;

Menu item break type.

property OnUncheckRadioItem : TOnMenuItem ;

Is called when radio item becomes unchecked in menu in result of checking another radio item

of the same radio group.

property RadioGroup: Integer;

Radio group index. Several neighbor items with the same radio group index form radio group.

Only single item from the same group can be checked at a time.

property IsCheckItem: Boolean;

If menu item is defined as check item, it is checked automatically when clicked.

procedure RadioCheckItem;

Call this method to check radio item. (Calling this method for an item, which is not belonging to

a radio group, just sets its Checked state to TRUE).

property Checked: Boolean;

Checked state of the item.

property Enabled: Boolean;

Enabled state of the item. When assigned, Grayed state also is set to arbitrary value (i.e., when

Enabled is set to true, Grayed is set to FALSE.)

property DefaultItem: Boolean;

Set this property to TRUE to make menu item default. Default item is drawn with bold. If you

change DefaultItem at run-time and want to provide changing its visual state, recreate the item

first resetting Visible property, then set it again.

property Highlight: Boolean;

Highlight state of the item.

property Visible: Boolean;

Visibility of menu item.

property Data: Pointer;

387

386

390

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Non-Visual Objects
Menu (TMenu)

Data pointer, associated with the menu item.

property Bitmap: HBitmap;

Bitmap used for unchecked state of the menu item.

property BitmapChecked: HBitmap;

Bitmap used for checked state of the menu item.

property BitmapItem: HBitmap;

Bitmap used for item itself. In addition, following special values are possible:

HBMMENU_CALLBACK, HBMMENU_MBAR_CLOSE, HBMMENU_MBAR_CLOSE_D,

HBMMENU_MBAR_MINIMIZE, HBMMENU_MBAR_MINIMIZE_D, HBMMENU_MBAR_RESTORE,

HBMMENU_POPUP_CLOSE, HBMMENU_POPUP_MAXIMIZE, HBMMENU_POPUP_MINIMIZE,

HBMMENU_POPUP_RESTORE, HBMMENU_SYSTEM.

property Accelerator: TMenuAccelerator ;

Accelerator for menu item.

property HelpContext: Integer;

Help context for entire menu (help context can not be assigned to individual menu items).

procedure AssignEvents(StartIdx: Integer; const Events: array of TOnMenuItem);

It is possible to assign its own event handler to every menu item using this call. This procedure

also is called automatically in a constructor NewMenuEx .

function MakeAccelerator(fVirt: Byte; Key: Word): TMenuAccelerator ;

Creates accelerator item to assign it to TMenu.ItemAccelerator[] property easy.

function GetAcceleratorText(const Accelerator: TMenuAccelerator):
KOLString;

Returns text representation of accelerator.

function Insert(InsertBefore: Integer; ACaption: PKOLChar; Event: TOnMenuItem ;

Options: TMenuOptions): PMenu ;

Inserts new menu item before item, given by Id (>=4096) or index value InsertBefore. Pointer to

an object created is returned.

property SubMenu: HMenu read FHandle; // write SetSubMenu;

Submenu associated with the menu item. The same as Handle. It was possible in earlier versions

to change this value, replacing (removing, assigning) entire popup menu as a submenu for menu

item.

386

386

387

386

386

386

386 386

391

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Non-Visual Objects
Menu (TMenu)

But in modern version of TMenu, this is not possible. Instead, entire menu object should be

added or removed using InsertSubmenu or RemoveSubmenu methods.

procedure InsertSubMenu(SubMenuToInsert: PMenu ; InsertBefore: Integer);

Inserts existing menu item (together with its subitems if any present) into given position. See

also RemoveSubMenu .

function RemoveSubMenu(ItemToRemove: Integer): PMenu;

Removes menu item from the menu, returning TMenu object, representing it, if submenu item,

having its own children, detached. If an individual menu item is removed, nil is returned.

function AddItem(ACaption: PKOLChar; Event: TOnMenuItem ; Options: TMenuOptions
): Integer;

Adds menu item dynamically. Returns ID of the added item.

function InsertItem(InsertBefore: Integer; ACaption: PKOLChar; Event: TOnMenuItem ;

Options: TMenuOptions): Integer;

Inserts menu item before an item with ID, given by InsertBefore parameter.

function InsertItemEx(InsertBefore: Integer; ACaption: PKOLChar; Event:

TOnMenuItem ; Options: TMenuOptions ; ByPosition: Boolean): Integer;

Inserts menu item by command or by position, dependant on ByPosition parameter

procedure AssignBitmaps(StartIdx: Integer; Bitmaps: array of HBitmap);

Can be used to assign bitmaps to several menu items during one call.

function GetMenuItemHandle(Idx : Integer): DWORD;

Returns Id of menu item with given index.

property ItemHandle[Idx: Integer]: DWORD;

Returns handle for item given by index.

property ItemChecked[Idx : Integer] : Boolean;

True, if correspondent menu item is checked.

procedure RadioCheck(Idx : Integer);

Call this method to check radio item. For radio items, do not use assignment to ItemChecked or

Checked properties.

property ItemBitmap[Idx: Integer]: HBitmap read GetItemBitmap write SetItemBitmap;

This property allows to assign bitmap to menu item (for unchecked state only - for checked

menu items default checkmark bitmap is used).

391 391

386

391

386 386

386

386

386 386

392

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Non-Visual Objects
Menu (TMenu)

property ItemText[Idx: Integer]: KOLString;

This property allows to get / modify menu item text at run time.

property ItemEnabled[Idx: Integer]: Boolean;

Controls enabling / disabling menu items. Disabled menu items are displayed (grayed) but

inaccessible to click.

property ItemVisible[Idx: Integer]: Boolean;

This property allows to simulate visibility of menu items (implementing it by removing or

inserting again if needed. For items of submenu, which is made invisible, True is returned. If such

item made Visible, entire submenu with all its parent menu items becomes visible. To release

menu properly it is necessary to make before all its items visible again.

This does not matter, if menu is released at the end of execution, but can be sensible if owner

form is destroyed and re-created at run time dynamically.

property ItemHelpContext[Idx: Integer]: Integer;

The context of the help system

property ItemAccelerator[Idx: Integer]: TMenuAccelerator ;

Allows to get / change accelerator key codes assigned to menu items. Has no effect unless

SupportMnemonics called for a form.

property ItemSubmenu[Idx: Integer]: HMenu; // write SetItemSubmenu;

Retrieves submenu item dynamically. See also SubMenu property.

procedure RedrawFormMenuBar;

for the main menu, this call provides an update of the image of the main menu bar after making

any modifications in it. If such a call is not made, then the menu itself is not updated.

property OnMeasureItem: TOnMeasureItem ;

This event is called for owner-drawn menu items. Event handler should return menu item height

in lower word of a result and item width (for menu) in high word of result. If either for height or

for width returned value is 0, a default one is used.

property OnDrawItem: TOnDrawItem;

This event is called for owner-drawn menu items.

property OwnerDraw: Boolean;

Set this property to true for some items to make it owner-draw.

386

266

390

210

393

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Non-Visual Objects
Menu (TMenu)

function Popup(X, Y : Integer): Integer;

Only for popup menu - to popup it at the given position on screen.

Return: If you specify TPM_RETURNCMD in the uFlags parameter, the return value is the menu-

item identifier of the item that the user selected.

If the user cancels the menu without making a selection, or if an error occurs, then the return

value is zero.

If you do not specify TPM_RETURNCMD in the uFlags parameter, the return value is nonzero if

the function succeeds and zero if it fails.

function PopupEx(X, Y: Integer): Integer;

This version of popup command is very useful, when popup menu is activated when its parent

window is not visible (e.g., for a kind of applications, which always are invisible, and can be

activated only using tray icon).

PopupEx method provides correct tracking of menu disappearing when mouse is clicked

anywhere else on screen, fixing strange menu behavior in some Windows versions (NT).

Actually, when PopupEx used, parent form is shown but below of visible screen, and when menu

is disappearing, previous state of the form (visibility and position) are restored. If such solution is

not satisfying You, You can do something else (e.g., use region clipping, etc.)

property OnPopup: TOnEvent;

This event occurs before the popup menu is shown.

property NotPopup: Boolean;

Set this property to true to prevent popup of popup menu, e.g. in OnPopup event handler.

property Flags: DWORD;

Pop-up flags, which are used to call TrackPopupMenuEx, when Popup or PopupEx method is

called. Can be a combination of following values:

TPM_CENTERALIGN or TPM_LEFTALIGN or TPM_RIGHTALIGN
TPM_BOTTOMALIGN or TPM_TOPALIGN or TPM_VCENTERALIGN
TPM_NONOTIFY or TPM_RETURNCMD
TPM_LEFTBUTTON or TPM_RIGHTBUTTON
TPM_HORNEGANIMATION or TPM_HORPOSANIMATION or TPM_NOANIMATION or
TPM_VERNEGANIMATION or TPM_VERPOSANIMATION
TPM_HORIZONTAL or TPM_VERTICAL.

By default, a combination TPM_LEFTALIGN or TPM_LEFTBUTTON is used.

property CurCtl: PControl;

By Alexander Pravdin. This property is assigned to a control which were initiated a pop-up, for

popup menu.

See also conditional compilation symbol: USE_MENU_CURCTL

393

42

394

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Non-Visual Objects
Tray Icon (TTrayIcon)

7.2 Tray Icon (TTrayIcon)

Perhaps this is not the most necessary object for most applications. But I put it directly after the

menu, tk. it appears to be almost as visual as the main menu - at least when used and activated.

This is an object that encapsulates calls to API functions that display a certain icon in a specially

designed area of the system taskbar.

Such an icon (usually referred to as a "tray icon") allows the user to organize a visual connection

with the application, which is temporarily hidden from his eyes, i.e. does not even take up the

buttons on the taskbar. The application can permanently show its tray icon (or even several

icons), or hide them as needed. There is also the ability to change the icon image on the fly,

providing animation to show the activity or readiness of a background process.

All the specified functionality, and some additional features, is contained in the TTrayIcon object

type. Its constructor:

NewTrayIcon(Parent, icon). Here Parent is a pointer to the window object (form), and icon is a

handle to an hIcon icon. Initially, the object is created in an inactive state (the icon is not

displayed in the system tray).

Object properties, methods and events:

Icon - descriptor of the hIcon type icon;

Active - state of activity;

Tooltip - a tooltip that appears when the mouse cursor stops over the icon. A maximum of 63

characters of this string are displayed (this is the system limit);

AutoRecreate - if you set this value to true, the icon will be automatically restored in the system

tray if, for any reason, the Explorer.exe program is restarted. It is Windows Explorer that

provides the system bar and other elements of the desktop. usually the user's "shell" of the

system. Unfortunately, this program can also crash. Not all (even reputable) applications provide

automatic self-recovery of the tray icon after such an incident, and as a result, if their windows

are hidden, it is not so easy to return them to the screen;

NoAutoDeactivate - by default, this property is false, i.e. automatic deactivation of the icon is

provided when the application is closed;

Wnd - handle to the window used to receive mouse messages. Initially, this is the window of the

Parent object specified when the object was created. It is also possible to attach a message

handler to a foreign window (not the window of the KOL.TControl object) using the

AttachProc2Wnd method;

AttachProc2Wnd - attaches a handler to an arbitrary Wnd window of the application. Such a

window can process messages for several different TTrayIcon objects without restriction;

DetachProc2Wnd - detaches the handler from the Wnd window;

395

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Non-Visual Objects
Tray Icon (TTrayIcon)

OnMouse - a mouse event that occurs when the mouse cursor moves over the icon of an object

in the system area, and when the mouse is clicked on it. The handler receives, besides the

sender, only the message type (WM_LBUTTONDOWN, WM_RBUTTONDOWN,

WM_MOUSEMOVE, WM_LBUTTONDBLCLK, etc.). Other parameters, such as the coordinates of

the mouse cursor on the screen, must be obtained by the application itself;

In MCK, the TTrayIcon object corresponds to the mirror component TKOLTrayIcon.

7.2.1 Tray Icon - Syntax

TTrayIcon(unit KOL.pas) TObj _TObj
TTrayIcon = object(TObj)

Object to place (and change) a single icon onto taskbar tray.

type TTrayIcon = object(TObj)

Object to place (and change) a single icon onto taskbar tray.

type TOnTrayIconMouse = procedure(Sender: PObj; Message: Word) of object;

Event type to be called when Applet receives a message from an icon, added to the taskbar

tray.

Constructor

function NewTrayIcon(Wnd: PControl ; Icon: HIcon): PTrayIcon;

Constructor of TTrayIcon object. Pass main form or applet as Wnd parameter.

TTrayIcon properties

property Icon: HIcon;

Icon to be shown on taskbar tray. If not set, value of Active property has no effect. It is also

possible to assign a value to Icon property after assigning True to Active to install icon first

time or to replace icon with another one (e.g. to get animation effect).

Previously allocated icon (if any) is not deleted using DeleteObject. This is normal for icons,

loaded from resource (e.g., by LoadIcon API call). But if icon was created (e.g.) by

CreateIconIndirect, your code is responsible for destroying of it).

property Active: Boolean;

Set it to True to show assigned Icon on taskbar tray. Default is False. Has no effect if Icon

property is not assigned. TrayIcon is deactivated automatically when Applet is finishing (but

only if Applet window is used as a "parent" for tray icon object).

92 92

92

395 92

369

203

395

395

395

395 395

369

369

396

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Non-Visual Objects
Tray Icon (TTrayIcon)

property Tooltip: KOLString;

Tooltip string, showing automatically when mouse is moving over installed icon. Though "huge

string" type is used, only first 63 characters are considered. Also note, that only in most recent

versions of Windows multiline tooltips are supported.

property AutoRecreate: Boolean;

If set to TRUE, auto-recreating of tray icon is proveded in case, when Explorer is restarted for

some (unpredictable) reasons. Otherwise, your tray icon is disappeared forever, and if this is the

single way to communicate with your application, the user no more can achieve it.

property NoAutoDeactivate: Boolean;

If set to true, tray icon is not removed from tray automatically on WM_CLOSE message receive

by owner control. Set Active := FALSE in your code for such case before accepting closing the

form.

property Wnd: HWnd;

A window to use as a base window for tray icon messages. Overrides parent Control handle is

assigned. Note, that if Wnd property used, message handling is not done automatically, and you

should do this in your code, or at least for one tray icon object, call AttachProc2Wnd .

TTrayIcon methods

destructor Destroy; virtual;

Destructor. Use Free method instead (as usual).

procedure ForceActive(SleepTime, Timeout: DWORD);

Sets Active := TRUE unil it becomes TRUE or Timeout exceeds, sleeping for SleepTime

milliseconds between attempts. E.g.: Trayicon1.ForceActive(100, 5000);

procedure AttachProc2Wnd;

Call this method for a tray icon object in case if Wnd used rather then control. It is enough to

call this method once for each Wnd used, even if several other tray icons are also based on

the same Wnd . See also DetachProc2Wnd method.

procedure DetachProc2Wnd;

Call this method to detach window procedure attached via AttachProc2Wnd . Do it once for a

Wnd , used as a base to handle tray icon messages. Caution! If you do not call this method

before destroying Wnd , the application will not functioning normally.

395

396

395

396

396

396 396

396

396

396

397

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Non-Visual Objects
Tray Icon (TTrayIcon)

TTrayIcon events

property OnMouse: TOnTrayIconMouse ;

Is called then mouse message is taking place concerning installed icon. Only type of message

can be obtained (e.g. WM_MOUSEMOVE, WM_LBUTTONDOWN etc.)

7.3 File Selection Dialog (TopenSaveDialog)

Dialogues are also non-visual objects, although working with them leads to the appearance of

some system windows on the screen. But these are system windows, they cannot be configured

as a form, and they appear only for a while, to perform certain actions.

The file selection dialog allows the user, using a standard interface, to select a file name to create

and write to it some information provided by the application, or the name of an existing file to

perform any actions with it. The file selection dialog can be a file open or save dialog. Only an

existing file can be specified in the open dialog. In the save dialog, it is also possible to specify

an existing file, and it is usually accepted that the system in this case asks the user an additional

question about whether he really wants to write new information into it (most likely, by screwing

up the previous contents of this file). Although, if you specify the "silent" mode in the options,

this question will not be asked.

The constructor of this control object with such a dialog:

NewOpenSaveDialog(s, dir, options) - creates a dialog with the header s (if the string is

empty, then the system header is used), with the initial dir directory and options from the

following set:

OSCreatePrompt - asking the user for confirmation to create a file, if it does not already exist;

OSExtensionDifferent - contains true after the end of the dialog, if the extension of the

selected file differs from the default;

OSFileMustExist - the file must exist;

OSHideReadonly - hide the "Read only" switch in the dialog;

OSNoChangedir - the user can select the file name only in the specified directory;

OSNoReferenceLinks - for shortcuts (.lnk) return the path to the shortcut file itself, and not to

the file associated with it;

OSAllowMultiSelect - allows multiple choice (multiple filenames are returned);

OSNoNetworkButton - does not allow selection in network folders;

OSNoReadonlyReturn - do not return files with the "read-only" attribute, including from

devices and directories to which writing is not allowed;

OSOverwritePrompt - issue a request for confirmation of overwriting for existing files;

OSPathMustExist - the directory must exist;

395

398

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Non-Visual Objects
File Selection Dialog (TopenSaveDialog)

OSReadonly - the "read-only" switch is initially on, when the dialog is finished this option shows

the last value of the switch;

OSNoValidate - do not check the presence of such a file and the correctness of the name (when

manually typing the file name in the dialog box);

OSTemplate - the dialog extension template from resources is used (see the Template

property);

OSHook - enables an additional custom dialog message handler (see the HookProc property).

To simplify the creation procedure, so as not to write out all the necessary properties every time,

you can pass the global constant DefOpenSaveDlgOptions as a parameter. Subsequently, the

options can be changed to the standard ones that are most suitable for the open or save dialog

by changing the value of the OpenDialog property.

So, the properties, fields, method and event of the object to control the file

selection dialog:

Execute - a function for invoking a dialogue. Returns true if the dialog ended with a successful

file selection;

Filename - a string that at the output contains the name of the selected file (if the dialog ended

successfully, i.e. the Execute method returned true). At the entrance, i.e. before calling the

Execute method, this property can be used to assign a default filename to return (this name will

be shown initially in the filename input field). When enabling multiple file selection in a dialog,

be sure to clear this property by assigning an empty string before calling Execute. For the case

when multiple files are selected, the output line is split into parts separated by # 13, the first part

contains the path to the directory, and all the rest contain only the file names;

InitialDir - the source directory, the list of which is opened when calling Execute. After calling

the dialog, in case of its successful completion, this property contains the path to the directory in

which the file was selected;

Filter - a string containing pairs <filter definition> | <filter patterns> separated by '|' (i.e., if there

are several filters, then it schematically looks like this: <OF1> | <WF1> | <OF2> | <WF2> | ...). If

there are several templates in one filter, then they are separated by the ';' symbol. An example

of a typical filter: 'Documents | * .doc; *. Txt | All files | *. *';

FilterIndex - index of the current filter (both before the call to Execute and as a result of its

successful execution);

DefExtension - the default extension string (written without a leading period, i.e., for example,

'txt', not '.txt'. Apparently, this property has no other purpose than the ability to check for

differences in the extension of the selected file from the default extension, just not;

Title - the title of the dialogue. If this line is empty, the system displays its title;

WndOwner - a window for processing messages, and for transferring to the system as the

"owner" of the dialogue (at the end of the dialogue, this window will be activated, as after the

usual exit from any modal dialogue);

OpenDialog - when assigning a value (true or false) to the Options property, a set of the most

appropriate options is assigned, respectively, for the dialog for opening and saving a file;

Options - dialogue options;

OpenReadOnly - TRUE after Execute , if Read Only check box was checked by the user.

Options are not affected anyway.

401

400

399

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Non-Visual Objects
File Selection Dialog (TopenSaveDialog)

TemplateName - the name of the resource

from which the system loads and configures

the extension for the dialog. It is required to

add the OpenSaveDialog_Extended symbol

to the list of symbols of the conditional

compilation of the project, and the

osTemplate value in the option;

HookProc - an event for processing messages

from the dialogue. It also requires the symbol

for conditional compilation

OpenSaveDialog_Extended, and the option

values osHook;

NoPlaceBar - prohibits showing the

"placements" ruler on the left side of the new

style dialog.

An additional window template for a dialog in

a resource can be created using Borland

Workshop or MS Visual C ++. Thus, for

example, a set of additional checkboxes,

buttons or windows can be created to display

the contents of the selected file. You will have

to work with windows in the HookProc handler

at a low level by calling API functions. But

sometimes the ability to add your own

controls to the standard opening dialog can

be very useful or just necessary.

In the MCK package, this object is represented by a non-visual mirror component

TOpenSaveDialog.

7.3.1 File Selection Dialog - Syntax

TOpenSaveDialog(unit KOL.pas) TObj _TObj

TOpenSaveDialog = object(TObj)

Object to show standard Open/Save dialog. Initially provided for XCL by Carlo Kok.

type TOpenSaveDialog = object(TObj)

Object to show standard Open/Save dialog. Initially provided for XCL by Carlo Kok.

type TOpenSaveOption = (OSCreatePrompt, OSExtensionDiffent, OSFileMustExist,
OSHideReadonly, OSNoChangedir, OSNoReferenceLinks, OSAllowMultiSelect,
OSNoNetworkButton, OSNoReadonlyReturn, OSOverwritePrompt, OSPathMustExist,
OSReadonly, OSNoValidate, OSTemplate, OSHook);

type TOpenSaveOptions = set of TOpenSaveOption;

Options available for TOpenSaveDialog .

Constructor

function NewOpenSaveDialog(const Title, StrtDir: KOLString; Options:

TOpenSaveOptions): POpenSaveDialog;

Creates object, which can be used (several times) to open file(s) selecting dialog.

92 92

92

92

399

399

400

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Non-Visual Objects
File Selection Dialog (TopenSaveDialog)

TOpenSaveDialog properties

property Filename: KOLString;

Filename is separated by #13 when multiselect is true and the first file, is the path of the files

selected.
 C:\Projects
 Test1.Dpr
 Test2.Dpr

If only one file is selected, it is provided as (e.g.) C:\Projects\Test1.dpr

For case when OSAllowMultiselect option used, after each call initial value for a Filename

containing several files prevents system from opening the dialog. To fix this, assign another

initial value to Filename property in your code, when you use multiselect.

property InitialDir: KOLString;

Initial directory path. If not set, current directory (usually directory when program is started) is

used.

property Filter: KOLString;

A list of pairs of filter names and filter masks, separated with '¦'. If a mask contains more than one

mask, it should be separated with ';'. E.g.:

 'All files|*.*|Text files|*.txt;*.1st;*.diz'

property FilterIndex: Integer;

Index of default filter mask (0 by default, which means "first").

property OpenDialog: Boolean;

True, if "Open" dialog. False, if "Save" dialog. True is default.

property Title: KOLString;

Title for dialog.

property Options: TOpenSaveOptions ;

Options.

property DefExtension: KOLString;

Default extention. Set it to desired extension without leading period, e.g. 'txt', but not '.txt'.

property WndOwner: THandle;

Owner window handle. If not assigned, Applet.Handle is used (whenever possible). Assign it,

if your application has stay-on-top forms, and a separate Applet object is used.

399

399

369

369

401

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Non-Visual Objects
File Selection Dialog (TopenSaveDialog)

property OpenReadOnly: Boolean;

TRUE after Execute , if Read Only check box was checked by the user. Options are not

affected anyway.

Properties, inherited from TObj

Property TemplateName: KOLString;

Do not forget to add OpenSaveDialog_Extended to project options conditionals!

Property HookProc: Pointer;

Property NoPlaceBar: Boolean;

TRUE, if place bar is disabled in the new style dialogs (if the symbol

OpenSaveDialog_Extended is not added in project options, place bar is always enabled in

Windows 2000 and higher).

TOpenSaveDialog methods

destructor Destroy; virtual;

destructor

Function Execute: Boolean;

Call it after creating to perform selecting of file by user.

7.4 Directory Selection Dialog (TOpenDirDialog)

The directory selection dialog is one of the cases when in KOL it was decided to create an object

type, while on the VCL it is proposed to directly call an API function, entering many parameters

each time. I decided to "wrap" the call of this function into an object also because, just like for

the file selection dialog, there are a number of properties that can "inherit" their state from one

call of the dialog to another (namely: start the directory that is made current when the dialog is

called on the screen). It is completely incomprehensible why the user should always start

choosing a directory from the "My Computer" or "Desktop" folder. It can be especially offensive

if very often you have to select the same directory while interacting with the application.

However, if you like,

401 400

92

41

41

402

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Non-Visual Objects
Directory Selection Dialog (TOpenDirDialog)

Constructor:

NewOpenDirDialog(s, options) - creates a dialog for choosing a directory with the header s (if

the line is empty, then the standard system header is used), and with a set of options:

odBrowseForComputer - dialog for choosing a computer, not a directory;

odBrowseForPrinter - the dialog is used to select a printer;

odDontGoBelowDomain - do not include network folders below the domain level (if someone

does not know what exactly this phrase means, then most likely you simply do not need this

option);

odOnlyFileSystemAncestors - the dialog allows you to select only system file objects. / Similar

to the previous one, if this phrase tells you little, there is nothing terrible about it. At the

moment, I myself do not know exactly what this means. Whenever I need to find out, I'll check

the Help. /

odOnlySystemDirs - the dialog allows you to select only system folders;

odStatusText - the presence of the status bar in the dialog is ensured;

odBrowseIncludeFiles - the dialog also displays the contents of folders (list of files);

odEditBox - the presence of a field for entering the name of the folder or the entire path is

provided;

odNewDialogStyle - a new style of dialogue. Compared to the old style, the new one, for

example, provides the ability to resize the dialog.

Properties, method and event of the dialog:

Execute - a method for invoking a dialog. Similar to the TOpenSaveDialog dialog, returns

true if the dialog succeeded by selecting a directory;

Title - the title of the dialog box. If the string is empty, the system uses the default header;

Options - dialogue options;

Path - path to the directory selected by the user at the exit from the dialog;

InitialPath - the initial path from which the directory selection starts when showing the dialog;

CenterOnScreen - center the dialog box on the screen when displaying;

OnSelChanged - an event that is triggered when the user selects a different directory while the

dialog is running. The handler can prohibit the selection of some directories, making the

selection button unavailable;

DialogWnd - the window of the dialog itself (available during the execution of the dialog itself,

can be used to enumerate its children in the custom event handler OnSelChanged);

WndOwner - the window responsible for the transmission of messages. The same window is

used as the "parent" for the dialog, i.e. is automatically activated upon completion.

In the package of mirror components MCK, the TKOLOpenDirDialog component takes on the

role of the image of this object.

But, in addition, it has a design-time property AltDialog, setting which to true means that the

form will use the alternative TOpenDirDialogEx dialog (see below).

397

404

403

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Non-Visual Objects
Directory Selection Dialog (TOpenDirDialog)

7.4.1 Directory Selection Dialog - Syntax

TOpenDirDialog(unit KOL.pas) TObj _TObj

TOpenDirDialog = object(TObj)

Dialog for open directories, uses SHBrowseForFolder.

type TOpenDirOption =(odBrowseForComputer, odBrowseForPrinter, odDontGoBelowDomain,
odOnlyFileSystemAncestors, odOnlySystemDirs, odStatusText, odBrowseIncludeFiles,
odEditBox, odNewDialogStyle);

Flags available for TOpenDirDialog object.

type TOpenDirOptions = set of TOpenDirOption ;

Set of all flags used to control ZOpenDirDialog class.

type TOnODSelChange = procedure(Sender: POpenDirDialog; NewSelDir: PKOL_Char; var
EnableOK: Integer; var StatusText: KOL_String) of object;

Event type to be called when user select another directory in OpenDirDialog. Set EnableOK to -1

to disable OK button, or to +1 to enable it. It is also possible to set new StatusText string.

Constructor

function NewOpenDirDialog(const Title: KOLString; Options: TOpenDirOptions):
POpenDirDialog;

Creates object, which can be used (several times) to open directory selecting dialog (using

SHBrowseForFolder API call).

TOpenDirDialog properties

property Title: KOLString;

Title for a dialog.

property Options: TOpenDirOptions ;

Option flags.

property Path: KOLString;

Resulting (selected by user) path.

property InitialPath: KOLString;

Set this property to a path of directory to be selected initially in a dialog.

92 92

92

403

403

403

403

404

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Non-Visual Objects
Directory Selection Dialog (TOpenDirDialog)

property CenterOnScreen: Boolean;

Set it to True to center dialog on screen.

property WndOwner: HWnd;

Owner window. If you want to provide your dialog visible over stay-on-top form, fire it as a child

of the form, assigning the handle of form window to this property first.

property DialogWnd: HWnd;

Handle to the open directory dialog itself, become available on the first call of callback

procedure (i.e. on the first call to OnSelChanged).

TOpenDirDialog methods

destructor Destroy; virtual;

Destructor

function Execute: Boolean;

Call it to select directory by user. Returns True, if operation was not cancelled by user.

TOpenDirDialog events

property OnSelChanged: TOnODSelChange ;

This event is called every time, when user selects another directory. It is possible to

enable/disable OK button in dialog and/or change dialog status text in response to event.

7.5 Alternative Directory Selection Dialog (TOpenDirDialogEX)

Sometimes the slowness of opening the standard dialog for choosing a directory becomes

annoying. But even that is not the main reason why I finally (most recently) made my own

dialogue for this purpose. The main reason is the incorrect display of the directory tree (simply,

the "glitchiness" of the system dialogue).

For example, a dialog starts to open, and a certain directory is selected in the tree by default.

And the parent folder for this directory only shows this subordinate folder, and flatly refuses to

show its other children. In addition, I do not really understand the intention of the Microsoft

programmers, who designed this dialog in such a way that, by default, the focus is not on the

folder tree, but on the OK button. As if this dialog is needed only for the user to confirm the

choice of the directory that the program offers him.

404

403

405

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Non-Visual Objects
Alternative Directory Selection Dialog (TOpenDirDialogEX)

Further, the ability to create directories for selection in the directory selection process is

potentially a very good feature. But how absurdly it is implemented! After creating the directory

and renaming it, the line "New Folder" remains in the input field. In order to still select the newly

created directory, you have to do additional manipulations. It would have been better then this

opportunity had not existed at all. [Ed. 2010: This item appears to have been fixed in Windows 7

- have you really read the book about KOL?]

And again, speed. Why recalculate the entire tree of folders from disk every time, if the dialog

can be hidden after the first call, and quickly shown again on the screen after repeated calls?

After all, it saves a lot of time and nerves.

Disadvantages of my alternate dialog:

everything is done by its own code, i.e. the size of the application is larger (by how much it

depends on whether the same objects are used elsewhere in the program code);

there is no way to create a new directory during the selection process;

the alternative dialog is not intended and cannot be used to search for a computer, printer, or

network folders if they are not connected as virtual drives with their own device letters.

Everything else I would attribute to the benefits. For example, the size and position of the dialog

box can be easily controlled from the application. You can add your own elements to the form

(including ensuring the creation of a new folder, if required). And most importantly, the speed of

reopening is almost instantaneous (and for the first time there are fewer "brakes", forgive me

this vernacular expression).

Note; Starting with version 3.00, this useful property of fast folder tree building has been

"compounded" by the transition to directory scanning by UNICODE versions of API functions

that perform file enumeration. Of course, these versions of the functions are only used on their

respective NT-based operating systems.

The TOpenDirDialogEx object type is implemented in a separate module KOLDirDlgEx.pas. Its

constructor:

NewOpenDirDialogEx - does not require parameters.

406

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Non-Visual Objects
Alternative Directory Selection Dialog (TOpenDirDialogEX)

Methods and properties:

Execute - a method for displaying the dialog form on the screen in the modal window mode,

until the user closes the dialog, or until a directory is selected from the folder tree;

InitialPath - the directory from which the dialogue starts;

Path - folder selected by the user (in case of successful completion of the dialogue);

Form - pointer to the PControl window object, which is a dialog form. You can customize this

shape (color, size, and other parameters), attach any handlers to it, add your own or change

existing elements - before calling the dialog, at your discretion. For the composition of the form,

see the CreateDialogForm method in the implementation part, where it is generated

dynamically;

Title - the title of the dialogue form;

OKCaption - the title of the OK button. By default, the string is 'OK';

CancelCaption - the title of the Cancel button. By default 'Cancel';

FilterAttrs - a set of file attributes for a directory filter. This field allows you to determine

whether to give the ability to select system and hidden folders - if necessary (enabling the

corresponding attribute value excludes directories with this attribute from viewing);

FilterRecycled - setting this property to true excludes the folder for "deleted" files from the list

of displayed files, regardless of its name on this computer (Recycled Bin, Recycle Bin, etc.).

In addition, a link bar can be added to the

extended folder selection dialog. To do

this, add the conditional compilation

symbol DIRDLGEX_LINKSPANEL and set

the LinksPanelOn property to TRUE. But

that's not enough if only youdo not intend

to force the user to fill the left panel of the

dialog with links again in each session of

the application. You should use the

CollectLinks function at the end of the

work to get a list of links selected by the

user in the left panel, after which you can

save it in a way convenient for you - in the

registry, ini-file, or something else, so that

it can be downloaded and used on

subsequent launches of the program. To

programmatically add links to the left

pane, use calls to the AddLinks method.

In addition, in the process of work, properties with self-explanatory names are available:

Links [] - list of links;

LinksCount - the number of links;

LinkPresent[] - checks for a link with the specified path to the folder,

as well as methods:

RemoveLink (lnk) - removes the link to the folder with the specified path;

ClearLinks - clears the list of links.

407

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Non-Visual Objects
Alternative Directory Selection Dialog (TOpenDirDialogEX)

For this object, I decided not to make a separate mirror in MCK, but to use the existing mirror

component TKOLOpendirDialog , adding only the design-time property AltDialog . This

property allows you to instantly "turn" a standard dialogue into an alternative one, and vice

versa.

But the composition of the properties used to customize the dialog at the design stage of the

form does not change. For the alternative dialog, the MCK generates a code that takes into

account only those properties that coincide with the properties of the standard dialog (in this

case, properties that are not "inherent" to the alternative dialog are ignored). Changing other

settings of the alternative dialog, specific only to it, must be done by your code, during the

execution of the application.

7.5.1 Alternative Directory Selection Dialog - Syntax

TOpenDirDialogEx(unit KOL.pas) TObj _TObj

TOpenDirDialogEx = object(TObj)

Type POpenDirDialogEx = ^TOpenDirDialogEx;

Constructor

function NewOpenDirDialogEx: POpenDirDialogEx;

Creates object, which can be used (several times) to open alternative directory selecting dialog

TOpenDirDialogEx properties

Property OKCaption: KOLString;

The title of the OK button. By default, the string is 'OK'.

Property CancelCaption: KOLString;

The title of the Cancel button. By default 'Cancel'.

Property FilterAttrs: DWORD;

A set of file attributes for a directory filter. This field allows you to determine whether to give the

ability to select system and hidden folders - if necessary (enabling the corresponding attribute

value excludes directories with this attribute from viewing).

Property FilterRecycled: Boolean;

Setting this property to true excludes the folder for "deleted" files from the list of displayed files,

regardless of its name on this computer (Recycled Bin, Recycle Bin, etc.).

Property Title: String;

The title of the dialogue form.

401 402

92 92

92

408

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Non-Visual Objects
Alternative Directory Selection Dialog (TOpenDirDialogEX)

Property Form: PControl;

DialogForm object. Though it is possible to do anything since it is in public section, do this only if

you understand possible consequences.

E.g., use it to change DialogForm bounding rectangle on screen or to add your own controls,

event handlers and so on.

property InitialPath: KOLString;

Set this property to a path of directory to be selected initially in a dialog.

property Path: KOLString;

Resulting (selected by user) path.

property FastScan: Boolean;

property Links[idx: Integer]: KOLString;

List of links

function CollectLinks: PStrList;

property LinksPanelOn: Boolean;

property LinksCount: Integer;

The number of links

function LinkPresent(const s: KOLString): Boolean;

Checks for a link with the specified path to the folder.

function GetLinksPanelOn: Boolean;

TOpenDirDialog methods

procedure DoubleClick(Sender: PControl; var M: TMouseEventData);

procedure CreateDialogForm;

Method in the implementation part, where it is generated dynamically.

Destructor Destroy; virtual;

Destructor

function Execute: Boolean;

Call it to select directory by user. Returns True, if operation was not cancelled by user.

procedure AddLinks(SL: PStrList);

409

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Non-Visual Objects
Alternative Directory Selection Dialog (TOpenDirDialogEX)

procedure RemoveLink(const s: KOLString);

Removes the link to the folder with the specified path.

procedure ClearLinks;

Clears the list of links.

7.6 Color Selection Dialog (TColorDialog)

There is no friend for taste and color. (Russian folk proverb)

When working with graphics, when customizing the interface, etc., you often have to choose the

color of the drawing tool, interface element, etc. This work is performed by this object, referring

to the standard system color selection dialog.

Constructor:

NewColorDialog(fillopen) - creates an object for invoking the color dialog, returning a pointer

of the PColorDialog type. The fullopen parameter specifies whether the dialog will immediately

open "completely", with an additional field for choosing an arbitrary True Color (16 million

colors), or only in a reduced form.

Object's only method:

Execute - calls a dialog to the screen, and in case of a successful color selection, signals this by

returning the value true. The selection result should be read from the Color field of the object,

after returning from the Execute method.

To customize the dialog, before invoking the dialog, you can change the following fields:

OwnerWindow - the window that "owns" the dialog (it becomes active immediately after the

end of the dialog, it is also used to determine the place on the screen for placing the dialog at

the moment of its opening);

CustomColors[1..16] - additional 16 colors, which are placed in additional squares at the

bottom of the dialog. By default, all these squares are white, and in the dialog itself, the user can

add his own colors to them using the shape extension, where you can select an arbitrary RGB

color;

ColorCustomOption - additional operating mode (open completely, open in abbreviated form,

do not allow to open completely);

Color - the color chosen by the user as a result of the successful completion of the dialog, such

as TColor.

Mirror in MCK: TKOLColorDialog.

410

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Non-Visual Objects
Color Selection Dialog (TColorDialog)

7.6.1 Color Selection Dialog - Syntax

TColorDialog(unit KOL.pas) TObj _TObj

TColorDialog = object(TObj)

Color choosing dialog.

Constructor

function NewColorDialog(FullOpen: TColorCustomOption): PColorDialog;

Creates color choosing dialog object.

TColorDialog methods

function Execute: Boolean;

Call this method to open a dialog and wait its result.

TColorDialog fields

OwnerWindow: HWnd;

Owner window (can be 0).

CustomColors: array[1 . . 16] of TColor;

Array of stored custom colors.

ColorCustomOption: TColorCustomOption;

Options (how to open a dialog).

Color: TColor;

Returned color (if the result of Execute is True).

92 92

92

410

411

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Non-Visual Objects
Clock (TTimer)

7.7 Clock (TTimer)

Now is the time to talk about time counting. As with the VCL, KOL has a TTimer object for this. It,

when activated, creates a system object that regularly invokes the designated timer handler. In

fact, such a timer is bound to one of the windows: by default, to a window specially created for

all timers of the main thread, or, if the TIMER_APPLETWND symbol is specified in the

application, then to the applet window (or the main form if the applet is not used).

Why am I writing all this. First, it is clear from what has been said that there are no guarantees

that such a watch will "tick" with the highest accuracy. The time lag between invocations of the

event handler assigned to the timer may not be exactly the same. And this essentially depends,

among other things, on the speed of the system, on the degree of its workload with various

tasks, on the requested response period. In particular, such a timer is unlikely to be triggered

more often than once every 50 milliseconds, i.e. more often than 20 times per second (1

millisecond = 0.001 seconds, i.e. 1000 milliseconds are included in a second, if anyone has

forgotten).

Second, a message from the system is first queued and then processed. If your own task is busy

with any long calculations (or waiting), it will not be able to handle this event from a simple timer

until control returns to the message loop, or one of the methods like ProcessMessages is

called.

Third, it is obvious that in order for a timer that works through window messages to work, it

needs at least one window. In case the application has no windows at all (for example, if you are

creating a console application), a special window (TimerOwnerWnd) is created for timers by

default. But the window handle can be saved by specifying the TIMER_APPLETWND conditional

compilation symbol in the project options. In this case, the applet window will be used (which

may sometimes be the same as the main form window). The timer message handler is

"attached" to this window. But if there is no such window, then the TTimer object will not be

used.

Note that if, in the case of a multithreaded application, the first timer is

"started" (by setting its Enabled property to TRUE) not in the context of the main

thread, and the conditional compilation symbol TIMER_APPLETWND is not

defined in the project, then the special TimerOwnerWnd window that "owns" the

timer will be created in the context of the current one, i.e. not the main thread.

As a result, if there is no message loop running on that thread, your timers will

never fire. I was somehow “lucky” to get this very rare combination of conditions,

after which I had to puzzle for a long time what was wrong. In my case, the

problem was solved by adding the TIMER_APPLETWND symbol, but in principle,

it can be solved by immediately starting (and stopping, if not really needed)

some trial timer in the main thread, for example, in the OnFormCreate handler.

412

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Non-Visual Objects
Clock (TTimer)

I would like to note that in order to ensure minimal code, the _NewWindowed call is used to

create such a window, and for this reason the window is not a clean window for receiving only

messages. It becomes the so-called topmost window, and can receive broadcast messages. If

there is a separate Applet object in the application and the OnMessage handler is installed in it,

this handler will receive, among other things, all messages intended for this invisible window.

This means, in particular, that system broadcasts will be intercepted one time more than you

have forms in the application. Conclusion: parse the handle field of the incoming message to

find out which window it is intended for, if required.

However, for all its drawbacks, an important advantage of such an imprecise timer is its relative

safety. Its timer handler is called on the same thread (thread) of commands in which the code of

other event handlers is running. That is, in the case of a single-threaded application, event

handlers never intersect at all, because each of them, including the timer handler, can be

considered executing "continuously" within the task. Of course, the system can interrupt it and

switch to another task, but then it will still return control to this particular code when it returns

control to your application.

Clock constructor:

NewTimer(i)- creates a TTimer object with an interval of i milliseconds, returning a pointer of

the PTimer type. The timer is initially created inactive. To run it, you need to set its Enabled

property to true.

Timer properties, methods and event:

Handle - descriptor of the hTimer system object, i.e. a number that allows the system to identify

this object in low-level API requests. This descriptor contains the value 0 if the timer is currently

inactive (the system object is only created when the timer starts);

Enabled - timer activity. This property can be used to start or restart the timer (to restart the

clock, you must first stop the clock, that is, set the Enabled property to false);

Interval - timer interval. When this value is changed, when the object is active, the timer is

"reset", i.e. the system object is recreated, and the countdown to the next triggering starts over;

OnTimer - timer event. In the event handler, you are allowed to change any properties of the

timer object, including the interval, or the active state. For example, if you want the timer to fire

once instead of regularly, you would add code to the handler to set the Enabled property to

false.

The TTimer object MCK has a mirrored TKOLTimer component. But it allows you to generate

code for more than just a simple clock object. When the multimedia timer object was

developed, I decided to use the same mirror component to generate its code, especially since

the TTimer and TMMTimer objects are very similar (see below). As a result, the TKOLTimer

mirror has been enriched with a number of properties that cannot be used when generating

code for a regular timer, and are simply ignored, namely: Periodic, Resolution.

413

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Non-Visual Objects
Clock (TTimer)

7.7.1 Multimedia Timer (TMMTimer)

This object is a more accurate instrument for counting time intervals than a simple timer. It uses

the so-called "multimedia" timer, which does not require a window handle for its operation, and

instead of sending messages, it directly calls the custom handler. Moreover, the call always takes

place in someone else's (system) command stream. Those. not only is it not guaranteed that the

event will only fire when the process is waiting for messages, but on the contrary: it will almost

certainly interrupt the current operation in order to execute the specified handler.

Hierarchically, TMMTimer does not derive from TObj, but inherits from TTimer. The SetEnabled

method of the TObj object is virtual, therefore, in principle, you can pass the TMMTimer object

as a parameter of some procedures instead of TTimer.

Multimedia Timer Constructor:

NewMMTimer(i)- returns a pointer of the PMMTimer type. As an interval, you can specify

values less than 50 milliseconds (including the minimum possible value of 1 millisecond). But the

accuracy of this timer, although higher, still cannot be limitless. The Windows operating system is

not a real-time system. Even the observance of the declared accuracy for this kind of timer (10

milliseconds by default) is not guaranteed if the system suddenly thought that it had more

important things to do. To improve accuracy, you can specify a higher resolution (i.e. lower the

Resolution property), raise the priority of your task, or stop using Windows (just kidding).

Properties, methods, event for TMMTimer are the same as those of its ancestor in the

TTimer hierarchy. Two more properties are added:

Periodic - the timer is periodic (by default, this property contains true immediately after the

object is created, i.e. the timer is created periodic). The non-periodic timer differs in that when

triggered, it automatically goes into an inactive state, i.e. it is "disposable";

Resolution - the accuracy of the multimedia timer. A value of 0 (which is used by default) means

absolute accuracy, but leads to a complete degradation of system performance. Those. the

system can no longer do anything, in this case it only counts the time, and the task manager, if it

can work, will only show that the processor is 100% loaded. A value of 10 is generally an

acceptable value and it is recommended not to use lower values whenever possible.

In the general MCK mirror for simple and multimedia timers, TKOLTimer, specifically for setting

up a multimedia timer, there are Periodic and Resolution properties. The design-time property

Multimedia should be used to switch the timer from normal to multimedia and back again.

And please don't forget that the media timer handler is called on its own command flow, i.e. it is

necessary to ensure the protection of resources and parts of the code that are not "re-

entrant" (reentrant is an old designation, which even managed to firmly enter the technical

language before the advocates of the purity of Russian speech realized themselves). In

particular, it is undesirable to work with window objects, except by sending messages to them by

en-queuing messages (TControl.Postmsg method, or PostMessage API function). See also the

next chapter (TThread object) for more details on securing code sections.

414

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Non-Visual Objects
Clock (TTimer)

7.7.2 Clock - Syntax

TTimer(unit KOL.pas) TObj _TObj

TTimer = object(TObj)

Easy timer encapsulation object. It uses separate topmost window, common for all timers in the

application, to handle WM_TIMER message. This allows using timers in non-windowed

application (but anyway it should contain message handling loop for a thread).

Note: in UNIX, there are no special windows created, certainly.

TMMTimer(unit KOL.pas) TTimer TObj _TObj
TMMTimer = object(TTimer)

Multimedia timer encapsulation object. Does not require Applet or special window to handle

it. System creates a thread for each high resolution timer, so using many such objects can

degrade total PC performance.

type TTimer = object(TObj)

Easy timer encapsulation object. It uses separate topmost window, common for all timers in the

application, to handle WM_TIMER message. This allows using timers in non-windowed

application (but anyway it should contain message handling loop for a thread).

Note: in UNIX, there are no special windows created, certainly.

type TMMTimer = object(TTimer)

Multimedia timer encapsulation object. Does not require Applet or special window to handle

it. System creates a thread for each high resolution timer, so using many such objects can

degrade total PC performance.

Constructors:

function NewTimer(Interval: Integer): PTimer;

Constructs initially disabled timer with interval 1000 (1 second).

function NewMMTimer(Interval: Integer): PMMTimer;

Creates multimedia timer object. Initially, it has Resolution = 0, Periodic = TRUE and Enabled =

FALSE. Do not forget also to assign your event handler to OnTimer to do something on timer

shot.

TTimer properties

property Handle: Integer;

Windows timer object handle.

92 92

92

92 92

369

92

414

369

415

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Non-Visual Objects
Clock (TTimer)

property Enabled: Boolean;

True, is timer is on. Initially, always False.

property Interval: Integer;

Interval in milliseconds (1000 is default and means 1 second). Note: in UNIX, if an Interval can be

set to a value large then 30 minutes, add a conditional definition SUPPORT_LONG_TIMER to the

project options.

TMMTimer properties

property Resolution: Integer;

Minimum timer resolution. The less the more accuracy (0 is exactly Interval milliseconds

between timer shots). It is recommended to set this property greater to prevent entire system

from reducing overhead. If you change this value, reset and then set Enabled again to apply

changes.

property Periodic: Boolean;

TRUE, if timer is periodic (default). Otherwise, timer is one-shot (set it Enabled every time in

such case for each shot). If you change this property, reset and set Enabled property again to

get effect.

TTimer methods

destructor Destroy; virtual;

Destructor.

TTimer events

property OnTimer: TOnEvent;

Event, which is called when time interval is over.

415

415

415

415

416

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Non-Visual Objects
Thread, or thread of commands (TThread)

7.8 Thread, or thread of commands (TThread)

Just like the VCL, to organize an independent thread of commands (or thread of commands,

thread is translated as "thread"), the KOL library has an object that is named the same - TThread.

But, unlike VCL, in KOL you do not need to create a descendant of the TThread object type to

organize your own thread. It is enough to assign an OnExecute event handler to it, and in it

implement the code that will be executed when the thread is started. To start the thread, call the

Resume method (newbies who are not familiar with this circumstance try to call the Execute

method, but this does not lead to the desired results, since in this case the launch occurs in the

same thread from which Execute was called).

There are several different constructors for organizing command flow:

NewThread - creates an object in the Suspended state. After such an object is created, it is

possible to assign an event handler to it on the OnExecute event, and start the thread (Resume);

NewThreadEx(onexec) - creates an object, assigns the handler specified in the parameter to

the OnExecute event, and starts it for execution (unless the onexec parameter is nil). Those. as a

result of this construction of the thread, it starts working immediately. If the application is

running on a machine with one processor, most likely, some part of the handler code (that is, the

thread code) will be executed before control returns to the thread that created the object, at the

point following the call to the NewThreadEx constructor;

NewThreadAutoFree(onexec) - creates and starts a thread object similarly to the previous

constructor, but additionally provides automatic destruction of the object upon completion of

the thread.

An important detail: the thread object in KOL does not allow itself to be started more than once.

In any case, if the stream was terminated, i.e. there was a return from the OnExecute handler, the

object is no longer needed. The difference in the third construction method is that the object

itself is comfortable with calling the Free method when the handler completes.

Methods, properties and events of the TThread object:

Execute - this method is for internal purposes only (although it is declared in the public section).

In principle, since this method is declared virtual, it is possible to inherit the TThread object,

similar to how it is done in the VCL. But I prefer to use the more economical method of

assigning a handler to the OnExecute event. This method is also more convenient, as it allows

you to use the "mirror" component of the MCK, and generate code for the stream "visually".

(Can you guess why the VCL does not have a design-time component to represent command

streams, and the code has to be written by hand?);

Resume - puts the suspended (Suspended) thread in the "command execution" mode. If the

thread is already running, this method does nothing. To start a thread, you should use this

method, not Execute, otherwise the thread statements will be executed directly in the same

thread from which Execute was called;

417

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Non-Visual Objects
Thread, or thread of commands (TThread)

Suspend - suspends the execution of the thread. This method can also be executed in the

suspended thread itself. In this case, the call to the Suspend method will return only when the

Resume method is executed for it from another thread;

Suspended - verifies that the thread is "suspended";

Terminate - stops the thread using the TerminateThread API function. Unlike the VCL, this is not

a normal shutdown method, but rather an emergency shutdown. In order to terminate the

execution of a thread more safely, you should somehow notify your thread that it would be time

for it to terminate (for example, set a flag in some global variable or in a field of an object

known to the thread - and at least use its Tag property common to all descendants of TObj ,

including the TThread object). After that, you should wait for some time for your flow to take

note of this information and end itself. Of course, the code for such interaction is entirely on the

shoulders of the programmer, that is, on you;

Terminated - checks that the stream has terminated (not necessarily abnormally, using the

Terminate method, maybe in the usual way - by returning from the OnExecute handler);

WaitFor - waiting for the completion of this thread, the return from this method occurs only

when the thread has actually finished;

Handle - the system handle to the TThread thread object. It can be useful for any API calls, for

example, it can be passed to the WaitForMultipleObjects and WaitForMultipleObjectsEx

procedures;

ThreadID - one more descriptor of the command stream as a system object of the kernel level

(kernel);

PriorityClass - thread priority class. I recommend especially not to overuse priority classes.

Windows' way of serving tasks and threads is imperfect. The slightest increase in the priority of

one of the threads often leads to the fact that only this thread is executed, and the rest are

forced to stand idle while it has something to do (that is, until it stops itself, or does not request

a long asynchronous I / O operation). Classes differ:

· IDLE_PRIORITY_CLASS - lowest, i.e. the thread only works when the system has nothing else to

do;

· NORMAL_PRIORITY_CLASS - normal priority class;

· HIGH_PRIORITY_CLASS - increased, i.e. all normal priority threads will run extremely slowly if

at least one higher priority thread is running;

· REALTIME_PRIORITY_CLASS - in real time: in general, everything stops, only this thread works,

even the system in this mode will not be able to service the mouse if your thread is busy

(hmm, is there a "reset" button on your computer?);

ThreadPriority - priority of a thread within its own priority class. Unlike the previous property,

this is a softer (and less fatal) way of managing thread priorities. However, the picture is exactly

the opposite: quite often, very little can be changed by controlling the priority using this

property, if you do not use extreme values.

The following priorities are distinguished:

· THREAD_PRIORITY_IDLE - lowest;

· THREAD_PRIORITY_LOWEST - minimal, allowing the thread to run even when the system is not

idle;

· THREAD_PRIORITY_BELOW_NORMAL - reduced compared to normal;

· THREAD_PRIORITY_NORMAL - normal;

· THREAD_PRIORITY_ABOVE_NORMAL - higher than normal,

92

418

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Non-Visual Objects
Thread, or thread of commands (TThread)

· THREAD_PRIORITY_HIGHEST - increased;

· THREAD_PRIORITY_TIME_CRITICAL — time-critical (this priority is good for a thread that

processes events from a timer created in the same thread);

PriorityBoost - Enables or disables for all threads in the system at once (that is, in general in the

entire system, according to the Win32 API help), a temporary increase in priority for threads

leaving the waiting state for a system event. Usually, this behavior is the default behavior for the

system, i.e. temporary increase in priority is allowed;

Data - an arbitrary pointer (or 32-bit number) associated with the stream object;

AutoFree - Set this property to true to provide automatic destroying of thread object when its

executing is finished.

OnExecute - "event", which is used to assign code to be executed in a thread, without inheriting

other object types from TThread. The termination of this handler means the end of the thread,

its Terminated property is set to true. It is no longer possible to run the stream again. If one and

the same thread is supposed to be used for multiple execution of tasks of the same type, then it

is necessary in the handler to organize an "eternal" cycle of waiting for orders to complete these

tasks. Of course, it is necessary to provide for an exit from this "eternal" cycle when some event

occurs, otherwise the thread will have to terminate abnormally when the application is about to

close;

OnSuspend - an event that is triggered immediately before the suspension of this thread. This

event fires in the context of the thread that called the Suspend. In particular, if a thread suspends

itself, then the handler is called in its context. When this event is fired, the thread is not yet

suspended .;

OnResume - an event that is triggered after the thread resumes. The handler for this event is

also called in the context of the command stream that called the Resume method. This means

that, firstly, this handler, in principle, will never be called in the context of the resumed thread

itself (since the thread cannot resume itself). And, secondly, by the time the handler for this

event is triggered, the resumed thread by the time (or in the process) of calling the handler for

this event, it is quite possible that it has already been stopped again (or even completed, and

even destroyed as an object!);

Synchronize(method) - calls the specified method "synchronously" on the main thread. The

Synchronize method should be used within the executing thread itself in order to provide safer

execution of sections of code that you want to execute in the context of the main thread. By

"main" thread is meant the command thread in which the Applet window object is created (and

all forms should be created in the same thread, to avoid confusion). This method provides

synchronization by sending (SendMessage) a message to the main window (applet), and as a

result, the system "freezes" the sending thread until it returns from the method passed for

execution in the main thread. This freezing does not make the thread "Suspended" in the usual

sense; it cannot be "renewed" at this moment

SynchronizeEx(method, param)- similar to the previous method, with the only difference that

the method must have (the only one, not counting Self) parameter, in the general case - a

pointer. What kind of pointer it is is up to the programmer. I added such a method when I felt

the need to not just synchronize some non-parameterizable action, and pass it some set of input

data to work with. One parameter is, of course, not enough, but, in principle, you can pass

anything through a pointer, you just need to declare your data structure and create a pointer

type to it.

419

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Non-Visual Objects
Thread, or thread of commands (TThread)

Like many other property and event-driven objects, there is a mirrored TKOLThread

component for the TThread object in the MCK. It is enough to put it on the form, assign an

event handler to the OnExecute event, and set up its other properties at the design stage to start

building a multi-threaded application.

However, you should understand what command streams are and how to use them correctly so

you don't run into big trouble. First of all, you need to clearly understand that the execution of

code executed in a thread can be interrupted at any time by the system, at the boundary of any

machine instruction (not even a Pascal operator), and control can be transferred to any other

thread in the system or in your own application. And the main stream in this is not at all different

from other streams.

This means that data (variables, descriptors of system objects) that are shared across multiple

threads of execution must be protected. The most unpleasant thing that can happen is the

destruction of objects (or freeing the memory of structures) in one thread, while they are being

handled in another thread.

My recommendations:

· Protect areas of code responsible for the creation and destruction of shared data using

mutexes, semaphores, and critical sections;

· Protect shared objects from premature destruction (using the RefCount property and the

RefInc and RefDec methods);

· Synchronize execution of actions that change the state of window objects with the main thread

(methods Synchronize and SynchronizeEx);

· Finally, avoid using too many threads in your application. If it is possible to solve the same

problem without creating command flows, do it this way.

7.8.1 Thread - Syntax

TThread(unit KOL.pas) TObj _TObj

TThread = object(TObj)

type Thread = ̂ TThread;

type TOnThreadExecute = function(Sender: PThread): Integer of object;

Event to be called when Execute method is called for TThread

Constructors:

function NewThread: PThread;

92 92

92

419

420

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Non-Visual Objects
Thread, or thread of commands (TThread)

Creates thread object (always suspended). After creating, set event OnExecute and

perform Resume operation.

function NewThreadEx(const Proc: TOnThreadExecute): PThread; stdcall;

Creates thread object, assigns Proc to its OnExecute event and runs it.

function NewThreadAutoFree(const Proc: TOnThreadExecute): PThread;

Creates thread object similar to NewThreadEx , but freeing automatically when executing of

such thread finished. Be sure that a thread is resumed at least to provide its object keeper

freeing.

Methods and properties:

function Execute: integer; virtual;

Executes thread. Do not call this method from another thread! (Even do not call this method at

all!) Instead, use Resume .

Note also that in contrast to VCL, it is not necessary to create your own descendant object from

TThread and override Execute method. In KOL, it is sufficient to create an instance of

TThread object (see NewThread , NewThreadEx , NewThreadAutoFree functions) and

assign OnExecute event handler for it.

procedure Resume;

Continues executing. It is necessary to make call for every nested Suspend .

procedure Suspend;

Suspends thread until it will be resumed . Can be called from another thread or from the

thread itself.

procedure Terminate;

Terminates thread.

function WaitFor: Integer;

Waits (infinitively) until thread will be finished.

function WaitForTime(T: DWORD): Integer;

Waits (T milliseconds) until thread will be finished.

property Handle: THandle;

Thread handle. It is created immediately when object is created (using NewThread).

420 421

420

419

421

419

420

420

419

419 419 420 420

421

420

420

419

421

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Non-Visual Objects
Thread, or thread of commands (TThread)

property Suspended: Boolean;

True, if suspended.

property Terminated: Boolean;

True, if terminated.

property ThreadId: DWORD;

Thread id.

property PriorityClass: Integer;

Thread priority class. One of following values: HIGH_PRIORITY_CLASS, IDLE_PRIORITY_CLASS,

NORMAL_PRIORITY_CLASS, REALTIME_PRIORITY_CLASS.

property ThreadPriority: Integer;

Thread priority value. One of following values: THREAD_PRIORITY_ABOVE_NORMAL,

THREAD_PRIORITY_BELOW_NORMAL, THREAD_PRIORITY_HIGHEST, THREAD_PRIORITY_IDLE,

THREAD_PRIORITY_LOWEST, THREAD_PRIORITY_NORMAL, THREAD_PRIORITY_TIME_CRITICAL.

property Data : Pointer;

Custom data pointer. Use it for Your own purpose.

property AutoFree: Boolean;

Set this property to true to provide automatic destroying of thread object when its executing is

finished.

property PriorityBoost: Boolean;

By default, priority boost is enabled for all threads.

procedure Synchronize(Method: TThreadMethod);

Call it to execute given method in main thread context. Applet variable must exist for that time.

procedure SynchronizeEx(Method: TThreadMethodEx; Param: Pointer);

Call it to execute given method in main thread context, with a given parameter. Applet variable

must exist for that time. Param must not be nil.

Events:

property OnExecute: TOnThreadExecute;

Is called, when Execute is starting.

property OnSuspend: TObjectMethod;

422

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Non-Visual Objects
Thread, or thread of commands (TThread)

Is called, when Suspend is performed.

property OnResume: TOnEvent;

Is called, when resumed.

Pseudo Streams
Variables:

MainThread: PThread;

PseudoThreadStackSize: DWORD = 1024 * 1024;

CreatingMainThread: Boolean;

Methods:

function WaitForSingleObject(hHandle: THandle; dwMilliseconds: DWORD): DWORD;
stdcall;

function WaitForMultipleObjects(nCount: DWORD; lpHandles: PHandle; fWaitAll: BOOL;
dwMilliseconds: DWORD): DWORD; stdcall;

7.9 Pseudo Streams

If you chase two hares, you won't catch a single one.

(Russian folk proverb)

Perhaps the biggest drawback of multithreading is the additional barriers to successfully

debugging subtle bugs. The operating system does the switching of threads, and it does it

according to its own understanding, without asking us when to execute which thread and when

to pause. These decisions of the system depend on external factors (work with other

applications, the network, the state of the swap file on the disk, etc., etc. - unless the weather on

Mars is in this list). The situation is aggravated in the case of multi-core processors, where

multiple threads can actually run completely in parallel. Therefore, with multiple executions of

the same application with the same data, even if you are trying to reproduce the entire

sequence of pressed buttons, there is no certainty. that you can accurately reproduce the

desired event. This is especially unpleasant if the desired event is a repetition of an error that

occurred under the same conditions in your program.

423

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Non-Visual Objects
Pseudo Streams

The error that can be reproduced is easy to fix. It is often enough to stop the program and go

into single-step debugging mode shortly before the situation in which the crash occurred. The

bad thing about elusive mistakes is that they are almost impossible to fix as long as they remain

elusive. In the case of a multi-threaded application, many errors that are easy to catch in a

normal single-threaded case turn into elusive ones.

Sometimes in such cases it helps to write code like this when multithreading is optional. For

example, with the conditional compilation symbol, you specify whether to build your application

for multi-threaded or single-threaded work. And then the code uses conditional branching,

driven by conditional compilation symbols. And depending on whether your conditional

compilation symbol is defined or not, the threads are run or not, and in the case of a single

thread, all actions in the application are executed sequentially.

Unfortunately, this path is not only difficult from the start (since instead of developing and

debugging one application, you actually have to create two different applications and debug

them separately), but it is not always useful for debugging purposes. The error that occurs with

enviable regularity in a multithreaded case, when multiple threads are disconnected, suddenly

disappears.

For KOL, I came up with a replacement for streams with pseudo-streams, in which the

application does not basically change its behavior, but in fact becomes single-threaded. To turn

streams into pseudo-streams, just add the PSEUDO_THREADS conditional compilation symbol

to the project options and build the application. For each pseudo-thread, except for the main

thread (represented by the global variable MainThread), a block of memory is allocated to store

the stack. The block size is 1 MB by default, but can be changed by setting the

PseudoThreadStackSize variable to the desired value.

Pseudo-Threads, like regular streams, can be started (Resume), suspended (Suspend), and

switched. The only difference is that pseudo-thread switching is not managed by the operating

system, which now considers the entire application to be single-threaded, but by the main

pseudo-thread. Switches now occur automatically in just a few places: in the

Applet.ProcessMessage method, in the Sleep procedure, and in the WaitForMultipleObjects

and WaitForSingleObject functions. Of course, to extend the functionality of these three API

functions, if the PSEUDO_THREADS symbol is defined, the KOL module declares its own

versions of these functions that can call the MainThread.NextThread method when the current

pseudo-thread has nothing else to do.

Thus, without changing the application code, the multi-threaded application becomes single-

threaded. The streams are preserved, but in a somewhat truncated form. For debugging

purposes, this model can be extremely useful, as pseudo-streams continue to "emulate" (mostly)

the behavior of streams. Although, without observing some rules, such a model may not work.

Namely:

· Critical sections should not be used to control exclusive access to shared resources: the thread

is now one, and no control will actually be performed. It will be much more useful to use

semaphores for the same purpose, for example: they will work successfully for both real

threads and pseudo-threads;

424

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Non-Visual Objects
Pseudo Streams

· You should not use the multimedia timer to organize pseudo-stream switching. If you try to

call the MainThread.SwithToThread or NextThread method directly from the multimedia timer

event handler, the application will simply break, since the call will actually be made from a

really separate thread created by the system for each active multimedia timer. If this action is

performed by sending a message (SendMessage), this message will still be processed only in

the message handler, i.e. only when the main pseudo-thread receives control, so there is no

special sense in such a switch;

· You should not take advantage of the fact that when working with window objects (when

creating them) outside the main thread, such windows usually do not appear on the screen,

remaining invisible. Or, if you create message handlers in additional threads in order to work

with its own window objects in each thread, then in the case of pseudo-threads, when there is

only one real thread, this model will most likely not work (only the loop last started).

· And, conversely, moving on to pseudo-threads, remember that in the case of normal threads

with window objects, work usually only happens in the main thread. And if in the process of

working with pseudo-streams, you start to change the code and directly work with window

methods and messages, then this can further prevent the return from pseudo-streams to

regular streams.

In fact, the transition to pseudo-streams is not a sufficient condition to ensure that all events

occurring in the application are accurately repeated (for example, for debugging purposes). In

addition to switching streams by the system, timers, both regular and multimedia, as well as

messages from the mouse and keyboard, are still elements of randomness. But at a certain stage

of execution, the probability of a repetition of events increases significantly, which means that

the chances of localizing the source of the error increase. And in principle, it becomes possible

to log all events affecting the operation of the application, and then, on subsequent launches,

reproduce them one-to-one. But you will have to do it with your own code.

7.10 Action and ActionList

Use action objects, in conjunction with action lists, to centralize the response to user commands

(actions).

Use AddControl, AddMenuItem, AddToolbarButton methods to link controls to an action.

See also TActionList.

TActionList maintains a list of actions used with components and controls, such as menu items

and buttons.

Action lists are used, in conjunction with actions, to centralize the response to user commands

(actions).

Write an OnUpdateActions handler to update actions state.

Created using function NewActionList.

See also TAction.

425

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Non-Visual Objects
Action and ActionList

TAction and TActionList Constructors:

function NewAction

function NewActionList: Action list constructor. AOwner - owner form.

Properties and Methods:

Caption: Text caption.

Hint: Hint (tooltip). Currently used for toolbar buttons only.

Checked: Checked state.

Enabled: Enabled state.

Visible: Visible state.

HelpContext: Help context.

Accelerator: Accelerator for menu items.

Actions: Access to actions in the list.

Count: Number of actions in the list.

Destroy

LinkControl: Add a link to a TControl or descendant control.

LinkMenuItem: Add a link to a menu item.

LinkToolbarButton: Add a link to a toolbar button.

Execute: Executes a OnExecute event handler.

Add: Add a new action to the list. Returns pointer to action object.

Delete: Delete action by index from list.

Clear: Clear all actions in the list.

Events:

OnExecute: This event is executed when user clicks on a linked object or Execute method was

called.

OnUpdateActions: Event handler to update actions state. This event is called each time when

application goes in the idle state (no messages in the queue).

7.10.1 Action and ActionList - Syntax

TAction = object(TObj)

Use action objects, in conjunction with action lists, to centralize the response to user commands

(actions).

Use AddControl, AddMenuItem, AddToolbarButton methods to link controls to an action.

See also TActionList .

TActionList = object(TObj)

TActionList maintains a list of actions used with components and controls, such as menu items

and buttons.

92

425

92

426

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Non-Visual Objects
Action and ActionList

Action lists are used, in conjunction with actions, to centralize the response to user commands

(actions).

Write an OnUpdateActions handler to update actions state.

Created using function NewActionList .

See also TAction .

type PControlRec = ̂ TControlRec;

type TOnUpdateCtrlEvent = procedure(Sender: PControlRec) of object;

type TCtrlKind = (ckControl, ckMenu, ckToolbar);

type TControlRec = record
 Ctrl: PObj;
 CtrlKind: TCtrlKind ;
 ItemID: integer;
 UpdateProc: TOnUpdateCtrlEvent ;
end;

PAction = ̂ TAction;

PActionList = ̂ TActionList;

Constructors:

function NewAction(const ACaption, AHint: KOLString; AOnExecute: TOnEvent):
PAction;

function NewActionList(AOwner: PControl): PActionList;

Action list constructor. AOwner - owner form.

TAction and TActionList properties

property Caption: KOLString;

Text caption.

property Hint: KOLString;

Hint (tooltip). Currently used for toolbar buttons only.

property Checked: boolean;

Checked state.

property Enabled: boolean;

428

426

425

426

426

427

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Non-Visual Objects
Action and ActionList

Enabled state.

property Visible: boolean;

Visible state.

property HelpContext: integer;

Help context.

property Accelerator: TMenuAccelerator ;

Accelerator for menu items.

property Actions[Idx: integer]: PAction ;

Access to actions in the list.

property Count: integer;

Number of actions in the list..

TAction and TActionList methods

destructor Destroy; virtual;

procedure LinkControl(Ctrl: PControl);

Add a link to a TControl or descendant control.

procedure LinkMenuItem(Menu: PMenu; MenuItemIdx: integer);

Add a link to a menu item.

procedure LinkToolbarButton(Toolbar: PControl; ButtonIdx: integer);

Add a link to a toolbar button.

procedure Execute;

Executes a OnExecute event handler.

function Add(const ACaption, AHint: KOLString; OnExecute : TOnEvent): PAction ;

Add a new action to the list. Returns pointer to action object.

procedure Delete(Idx: integer);

Delete action by index from list.

386

426

428

428 426

428

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Non-Visual Objects
Action and ActionList

procedure Clear;

Clear all actions in the list.

TAction and TActionList events

property OnExecute: TOnEvent;

This event is executed when user clicks on a linked object or Execute method was called.

property OnUpdateActions: TOnEvent;

Event handler to update actions state. This event is called each time when application goes in the

idle state (no messages in the queue).

KOL Extensions

In this chapter, I will try to provide an overview of KOL extensions. Many of them can be
found in the archives on the main KOL WEB site (http://f0460945.xsph.ru/), others on
some other KOL sites.

430

KOL/MCK - User Guide

 © 2024 Carl Peeraer

KOL Extensions

8 KOL Extensions

In addition to the KOL.pas file itself, the KOLadd.pas file also belongs to the main delivery set,

into which minor objects are taken out. As I mentioned above in the text, the main reason for

moving some part of the code from KOL.pas into an additional module is the need to save lines

in the main file of the KOL.pas library. The fact is that when the number of lines reaches 65536,

the Delphi debugger refuses to work normally. Apparently, this is due to the fact that double-

byte unsigned numbers are used to store line numbers in debug information. If not for this

circumstance, I would gladly leave all this code in one module, making it easier for myself to

maintain and saving 56 bytes in the resulting application.

The content of the KOLadd.pas file is mainly described above. When talking about the objects

that are defined in this file, I have always mentioned this circumstance. This chapter is not about

them.

Literally from the very publication of KOL, there were many programmers on the World Wide

Web who contributed to its development. Not only by fixing errors and reporting any

inaccuracies noticed, but also by creating additional objects, visual controls, adapting existing

VCL components, translating code from C ++. I have also done sometimes similar work,

extending the capabilities of the library as needed, and sometimes for the purpose of

demonstrating how such extensions should be performed. The KOL library is actually the result

of the collective work of many people. As a result, KOL in its capabilities not only approached,

but in some areas surpassed the VCL library in its capabilities.

Often there is more than one implementation of the same functionality for KOL, done by

different authors at different times, and often independently of each other. Most often, because

the existing implementation for some reason did not suit the new author, and the new code is

either larger or smaller, it may slightly differ in the set of implemented features and in the

quality of execution. Some projects were never brought to a state of completion, and were

abandoned by the authors (but this does not happen so often). As a result, the developer has

the opportunity to choose the extension implementation that suits him best.

In this chapter, I will try to provide an overview of such extensions. Many of them can be found

in the archives on the main KOL WEB site (http://f0460945.xsph.ru/), others on some other KOL

sites.

· Exception Handling

o Exception Handling - Syntax

· Floating Point Math

· Complex Numbers

· Dialogues

o Font selection

o Find and replace dialog

o System dialogue "About the program"

· Printing and Preparing Reports

o Dialogs for choosing a printer and printing settings.

432

434

436

436

437

437

437

437

437

438

http://f0460945.xsph.ru/

431

KOL/MCK - User Guide

 © 2024 Carl Peeraer

KOL Extensions

o Printing reports

· Working with Databases

o KOLEDB

o KOLODBC

o KOLIB

o KOLSQLite

o Working with DBF files and other databases

· Graphics Extensions

o Metafiles WMF, EMF

o Metafiles - Syntax

o JPEG images

o GIF Images, GIFShow, AniShow

o KOLGraphic Library

o Using GDI + (KOLGdiPlus)

o Other image formats

o Additional utilities for working with graphics

o Open GL: KOLOGL12 and OpenGLContext modules

· Sound and Video

o KOLMediaPlayer

o KOLMediaPlayer - Syntax

o PlaySoundXXXX

o KOLMP3

o Other means for working with sound

· Working with Archives

o TCabFile

o TCabFile - Syntax

o KOLZLib

o KOL_UnZip

o KOLZip

o DIUCL

o KOLmdvLZH

· Cryptography

o TwoFish

o KOLMD5

o KOLAES

o KOLCryptoLib

· ActiveX

o Active Script

· OLE and DDE

o KOL DDE

o Drag-n-Drop

· NET

o Sockets and protocols

o Working with ports

o CGI

· System Utilities

438

439

439

440

441

441

441

441

442

442

443

444

446

446

447

447

447

447

449

459

460

460

460

460

462

462

462

462

463

463

463

463

463

463

464

464

464

464

465

465

466

466

432

KOL/MCK - User Guide

 © 2024 Carl Peeraer

KOL Extensions

o NT services

o Control Panel Applet (CPL)

o Writing your own driver

o NT Privilege Management

· Other Useful Extensions

o Working with shortcuts, registering file extensions

o Sharing memory between applications

o Saving and restoring form properties

o Additional buttons on the title bar

o Macroassembly in memory (PC Asm)

o Collapse Virtual Machine

o FormCompact Property

· Additional Visual Objects

o Progress bar

o Track bar (marked ruler)

o Header (tables)

o Font selection

o Color selection

o Disk selection

o Entering the path to a directory

o Selecting a file name filter

o List of files and directories

o IP Input

o Calendar and date and / or time selection

o Double List

o Two-position button (up-down)

o Button, non-rectangular

o Extended panel

o Label with image

o Separator

o Table

o Syntax highlighting

o GRush Controls

o Other additional visual elements

o Tooltips

· XP Themes

· Extensions of MCK itself

o Improved font customization

o Alternative component icons

8.1 Exception Handling

As a side note, we are not interested in the try finally end block in this chapter. The finally

processing block does not require the use of any additional code, classes, and all that is needed

to use it is in the System.pas system module (included in the way used by each module in a way

466

467

467

467

467

467

467

468

468

469

470

470

470

471

471

471

471

471

472

472

472

472

472

472

473

473

473

473

473

473

473

474

476

477

477

479

479

433

KOL/MCK - User Guide

 © 2024 Carl Peeraer

KOL Extensions
Exception Handling

transparent to the programmer). There are no restrictions in KOL to use it. It will be about blocks

of the try except end type, and in particular about the ability to recognize what kind of exception

occurred by analyzing the code of the raised exception.

In the Delphi VCL, exception handling requires working with classes because all exception

objects inherit from the Exception class, which is a direct inheritor of the TObject base class.

Classes are not used in the KOL library. The very fact of adding classes does not increase the

application by much (about 2.5K), but the exceptions are described in the SysUtils module, the

connection of which already adds more than 20K to the weight of the finished program.

Therefore, in order to enable KOL programs to handle exceptions without inflating their size too

much, I added the err.pas module at the time.

This module contains a KOL-specific definition of the Exception class. Moreover, unlike the

Delphi standard, you do not need to use inheritance to use it. The rule here is "do not inherit

unless strictly necessary." In accordance with the same rule, KOL organizes graphic tools for

drawing a canvas (brush, pencil, font - in one object type), basic visual objects (TControl). As

already mentioned, creating a new inheritor will add at least one more virtual method table

(vmt) to the application's weight, 4 bytes for each virtual method that exists in the class and all its

ancestors in the inheritance hierarchy.

That is, in order to raise its own exceptions in the KOL application, there is no need to inherit its

class from Exception. It is enough to write:
raise Exception.Create (e_Custom, 'some error message here');

This option is useful if you just need to distinguish your software exceptions from standard

system exceptions, which include, for example, division by zero (e_ZeroDivide).

If your exceptions also need to be classified by type, then the following exception constructor

will do:
raise Exception.CreateCustom (my_code, 'some error message');

When constructing an object of type Exception, the number my_code is assigned to the

ErrorCode property, and then can be parsed in the exception handling block as usual. For

example:

try
 ... code that can lead to an exception
except on E: Exception do
 if E.ErrorCode = my_code then…
end;

Of course, when there are many such codes, it may be more convenient to use the multiple

choice construct case (which, by the way, is impossible to distinguish between the exception

classes in the VCL, inherited for each of its kind of exceptions).

The err module is in the https://www.artwerp.be/kol/kol-mck-master_3.23.zip archive,

along with the kolmath and Cplxmath modules discussed below.

434

https://www.artwerp.be/kol/kol-mck-master_3.23.zip

434

KOL/MCK - User Guide

 © 2024 Carl Peeraer

KOL Extensions
Exception Handling

8.1.1 Exception Handling - Syntax

Exception(unit err.pas) TObject
Exception = class(TObject)

Exception class. In KOL, there is a single exception class is used. Instead of inheriting new

exception classes from this ancestor, an instance of the same Exception class should be used. The

difference is only in Code property, which contains a kind of exception.

type TError =(e_Abort, e_Heap, e_OutOfMem, e_InOut, e_External, e_Int, e_DivBy0,
e_Range, e_IntOverflow, e_Math, e_Math_InvalidArgument, e_InvalidOp, e_ZeroDivide,
e_Overflow, e_Underflow, e_InvalidPointer, e_InvalidCast, e_Convert,
e_AccessViolation, e_Privilege, e_StackOverflow, e_CtrlC, e_Variant, e_PropReadOnly,
e_PropWriteOnly, e_Assertion, e_Abstract, e_IntfCast, e_InvalidContainer,
e_InvalidInsert, e_Package, e_Win32, e_SafeCall, e_License, e_Custom, e_Com, e_Ole,
e_Registry);
Main error codes. These are to determine which exception occure. You can use
e_Custom code for your own exceptions.

type Exception = class(TObject)

Exception class. In KOL, there is a single exception class is used. Instead of inheriting new

exception classes from this ancestor, an instance of the same Exception class should be used. The

difference is only in Code property, which contains a kind of exception.

Exception properties

property Message: KOLString;

Text string, containing descriptive message about the exception.

property Code: TError ;

Main exception code. This property can be used to determine, which exception occur.

property ErrorCode: DWORD;

This code is to detailize error. For Code = e_InOut, ErrorCode contains more detail

description of input/output error. For e_Custom, You can assign it to any value You want.

property ExceptionRecord: PExceptionRecord;

This property is only for e_External exception.

property Data: Pointer;

Custom defined pointer. Use it in your custom exceptions.

434

434

434

435

KOL/MCK - User Guide

 © 2024 Carl Peeraer

KOL Extensions
Exception Handling

Exception methods

constructor Create(ACode: TError ; const Msg: string);

Use this constructor to raise exception, which does not require of argument formatting.

constructor CreateFmt(ACode: TError ; const Msg: string; const Args: array of
const);

Use this constructor to raise an exception with formatted Message string. Take into attention,

that Format procedure defined in KOL, uses API wvsprintf function, which can understand a

restricted set of format specifications.

constructor CreateCustom(AError: DWORD; const Msg: String);

Use this constructor to create e_Custom exception and to assign AError to its ErrorCode

property.

constructor CreateCustomFmt(AError: DWORD; const Msg: String; const Args: array of
const);

Use this constructor to create e_Custom exception with formatted message string and to assign

AError to its ErrorCode property.

constructor CreateResFmt(ACode: TError ; Ident: Integer; const Args: array of
const);

destructor Destroy; override;

destructor

Exception events

property OnDestroy: TDestroyException;

This event is to allow to do something when custom Exception is released.

434

434

434

434

434

434

436

KOL/MCK - User Guide

 © 2024 Carl Peeraer

KOL Extensions
Exception Handling

Exception tasks

With err unit, it is possible to use all capabilities of Delphi exception handling almost in the same

way as usual. The difference only in that the single exception class should be used. To determine

which exception occure, use property Code . So, code to handle exception can be written like

follow:

 try
 ...
 except on E: Exception do
 case E.Code of
 e_DivBy0: HandleDivideByZero;
 e_Overflow: HandleOverflow;
 ...
 end;
 end;

To raise an error, create an instance of Exception class object, but pass a Code to its

constructor:

 var E: Exception;
 ...
 E := Exception.Create(e_Custom, 'My custom exception');
 E.ErrorCode := MY_MAGIC_CODE_FOR_CUSTOM_EXCEPTION;
 raise E;

8.2 Floating Point Math

Exactly for the same reason as in the previous paragraph, namely, out of the desire to abandon

the connection of the SysUtils module, the kolmath.pas module was created for KOL. In many

ways, this module repeats the contents of the math.pas module, but provides all its capabilities

without unnecessarily burdening * the application code. In addition to the general set of

functions from the standard math.pas module, a number of useful constants have also been

added to kolmath (for example, MinSingle, MaxSingle, MinDouble, MaxDouble, MinExtended, ...

MaxComp) and functions (EAbs, EMin, EMax, ESign, iMin, iMax , iSign, IsPowerOf2, Low0, Low1,

count_1_bits_in_byte, count_1_bits_in_dword). The IntPower function is present in the KOL.pas

module itself, so it is commented out in kolmath. For a more detailed study of the contents of

the kolmath module, I suggest that you familiarize yourself with its source code.

The kolmath module, like the previous one, is located in the

https://www.artwerp.be/kol/kol-mck-master_3.23.zip archive.

8.3 Complex Numbers

Once upon a time I received such a request from one of the KOL users: to help in writing a set of

functions for more convenient work with complex mathematics. If possible, I granted the

request, and as a result, the Cplxmath module appeared. In fact, this is an add-on over the

434

434

https://www.artwerp.be/kol/kol-mck-master_3.23.zip

437

KOL/MCK - User Guide

 © 2024 Carl Peeraer

KOL Extensions
Complex Numbers

komath module, with a description of mathematical operations on complex numbers,

represented by a pair of floating point numbers. The Complex type is described as
Complex = record Re, Im: double end;

Of course, writing code that converts mathematical operations into function calls makes the code

significantly less readable than using operators, so using the free pascal compiler (in which the

class of complex numbers is already implemented through operator redefinition) to work with

complex arithmetic will be more productive.

The Cplxmath module is in thehttps://www.artwerp.be/kol/kol-mck-master_3.23.zip
archive, along with the err and kolmath modules.

8.4 Dialogues

Initially, only the most essential dialogs were included in KOL. As needed, the developers added

those that they needed for their work. You can download them and use them if needed.

8.4.1 Font selection

The dialog for choosing the TMHFontDialog font was written by Dmitry Zharov (nickname

Gandalf). See the MHFontDialog.zip archive in the Dialogues section of the main site. In

addition, the choice of the font name can be done through the combo box. This can be done

using a simple combo list filled with API calls to list the fonts installed on the system. Or, in order

not to reinvent the wheel, use the TFontCombo component from Bohuslav Brandys (Poland) -

from his package of "improved combi-lists" enchcombos.zip.

8.4.2 Find and replace dialog

The find / replace string feature can come in handy, for example, if you are implementing your

own notepad type application. Use in this case to implement this dialog function from the

MHFindReplaceDialog archive, as you can judge from the prefix - this is also the development

of Dmitry Zharov aka Gandalf.

8.4.3 System dialogue "About the program"

Similarly, to display a beautiful system dialog "About", in case you are not satisfied with a simple

call to the Messageboxes function, there is an MHAboutDialog dialog by the same author

as above.

8.5 Printing and Preparing Reports

Printing documents in Windows is not as trivial as it might seem at first glance. To do this, you

must, at a minimum, provide in your application the ability for the user to select a printing device

(printer), configure it (select the paper size and orientation, print quality, other options specific

to this printer, for example, color or black and white printing) ... In addition, the application must

86

https://www.artwerp.be/kol/kol-mck-master_3.23.zip

438

KOL/MCK - User Guide

 © 2024 Carl Peeraer

KOL Extensions
Printing and Preparing Reports

be able to print the document regardless of the technical characteristics of the device, such as

resolution, for example.

This all looks a little tricky to program if you only use API calls directly. Not to mention the fact

that when programming something tied to hardware, it is always better to use well tested code

(in different conditions and on different equipment) than your own, well tested only for one or

two configurations that you personally encountered ... As I remember now, my programs had

several times problems with printing on unprecedented printing equipment - only due to the

fact that at one time, when writing code, I could not foresee some deviations in the parameters

of the device, such that I do not have was close at hand for testing the moment of writing the

code.

8.5.1 Dialogs for choosing a printer and printing settings.

The first part of the task will help you to complete the dialogs for selecting the TPrintDlg printer

and setting the TPageSetupDialog printer from Boguslav Brandys. The very same printing can

be done more conveniently than directly through the API, if you use the TPrinter object of the

same author, or TMHPrinter - from Dmitry Zharov. Both of these print objects provide a canvas

for drawing and a set of properties and methods that are convenient for organizing the printing

process.

8.5.2 Printing reports

An even more convenient printing interface is provided by the KOLReport printing package (this

is my development, using one of the above modules - by choice - to perform low-level

printing). In fact, this module is ported from the NormalReport component set, which I

developed for the VCL.

The main difference between this package and all kinds of XXXXXReport, usually used by Delphi

programmers, is its minimal visibility. For a programmer who is faced with printing time after

time (that is, extremely rarely, like me), a thorough study of any reporting system, in which

visuality is brought to deadly perfection, presents certain difficulties. Every time you need to

prepare a report, you have to remember where what properties are and how to change them so

that everything becomes the way you need it - this is not a task for the faint of heart. This is

especially annoying if you really rarely have to deal with printing, once every couple of months

or every six months.

So I took a different path than providing a fully visual design-time interface. In addition, no

matter how super-sophisticated this interface is, it will still have some limitations. And then go

and prove to the user that his order with the placement of the logo here in this place on the

sheet is not feasible, or that this method of transferring cells to another line is not supported by

the print component, and he must accept it.

The final result is actually more convenient for programmers who are great at writing code. It is

much easier for a programmer to write loops and use unambiguously understandable language

instructions to check all the necessary conditions than to set up a complex visual component,

which also needs to be figured out beforehand.

439

KOL/MCK - User Guide

 © 2024 Carl Peeraer

KOL Extensions
Printing and Preparing Reports

So, working with KOLReport is structured as follows. First, you are on the form (for this you can

select a separate form, or several separate forms), the cells and rows of cells of the report are

"drawn". In general, any visual control, for example, a label or a panel, can work as a cell. But in

order for cells to have a white background and can have custom borders without further

complicating their existence, the same package implements cell constructors such as

TReportLabel and TBand. Of course, they have MCK mirrors so that the report can be designed

semi-visually using the MCK environment.

Those cells that are used to accommodate fixed information (text and images) can be

customized at the design stage. Other cells will get their value just before printing. Of course, it

is enough to "draw" one standard ruler, fill it in immediately before issuing it to the report, and

reuse it after sending it, creating as many lines in the table as necessary. The process of

displaying rulers and individual cells, as well as changing pages, is handled by your code placed

in the OnPrint event handler. You have a wide range of methods for displaying cells, formatting

them, managing the grouping of information on a sheet, and so on. But the most important tool

remains the programming language.

Fulfilling the most incredible user requirements is a breeze with this reporting system. And, most

importantly, such code is easy to modify in the future and is not at all difficult to maintain (as I

have already had the opportunity to see from my own experience). For programmers

developing projects using KOL, the argument of the compactness of the resulting application will

not be superfluous. For example, the compiled application takes up no more than 40KB in

compiled form.

8.6 Working with Databases

When I thought about KOL, I never thought that a small program made with this library would

ever be able to work with databases. Typically, a minimal Delphi application that used the BDE

engine to communicate with databases would start at 600K in size. In order to connect to the

server, to perform simple work, it was required to connect to the application modules of

enormous scale, the inner contents of which remained a Great and Incomprehensible Secret for

mere mortals. The most important secret for me still remains: what else is being done there

compared to the engines made for KOL that the programs turn out to be so bloated.

8.6.1 KOLEDB

I decided to make the first "real" engine for working with a database through the OLE DB

interface. The main (and almost the only) source that turned me on this path was the

documentation from Microsoft, namely MSDN. Based on what I read there, I decided that this is

the most progressive of all interfaces. It is he who is used by the modern ADO system as the

lower level for communication with the database.

In order to keep the size of the application as small as possible, I decided to sacrifice a few

things. Namely: parameters in SQL queries. In reality, the use of parameters is not strictly

440

KOL/MCK - User Guide

 © 2024 Carl Peeraer

KOL Extensions
Working with Databases

required, that is, you can do without them perfectly. Moreover, for some time now I have

stopped using them altogether. The main reason why I didn't make friends with them is the

inconvenience of debugging SQL queries containing such parameters. If the query has no

parameters, and all values are inserted as string values, then the query can be copied unchanged

into the same Query Analyzer, and run for testing in offline mode (in the sense, separately from

the application). For comparison, try doing the same with a query containing more than a dozen

parameters.

Note: Several methods can be used to copy a query generated dynamically in the application

code as a result of concatenating several (or many) strings. For example, just before executing a

query, when it has already been formed, its text can be saved in a debug text file.

The KOLEDB package contains a sufficient minimum of tools needed to connect to the database

server and get started with it (TDataSource objects, TSession objects). At this stage, the

greatest difficulty is the formation of the connection string: each server needs its own string, with

its own set of parameters. And even the syntax for different servers can vary significantly. But an

application is usually developed for one type of server, so this difficulty has to be overcome only

once.

The TSession object allows you to organize transactions, and is the "parent" of all created SQL

TQuery objects.

The main workhorse of the package is TQuery. It allows you to execute SQL queries, get results,

and can work with almost all major data types. To avoid the use of cumbersome and slow variant

data types, the properties for accessing data fields are separated by type. For example, to refer

to string fields, use the SField [idx] and SFieldByName ['name'] properties, for integer fields -

IField and IFieldByName, and so on. This does not mean, however, that the value of a numeric

field can only be accessed through a property whose name begins with the letter corresponding

to its type. Access through the SField property is allowed: in this case, the field will be

automatically converted to a string, if possible.

In practice, access to BLOB fields remained unimplemented for KOLEDB (of the really useful

features). I think that when someone needs this module for serious work, then this programmer

will not have too many problems to modify it to the desired functionality.

8.6.2 KOLODBC

Another no less (or even more) developed interface for communication with the database was

made by me quite recently, at the end of 2005. This time, I needed to communicate with the

database through an ODBC driver, bypassing ADO - that was the customer's requirement. The

project was developed for VCL, respectively, the first version was made specifically for VCL. It

was then that, amazed at the unexpected simplicity of the resulting code, I spent another couple

of days making this interface available to KOL programmers as well. It is enough to define a

conditional compilation symbol in the project options, and the classes become simple object

types.

441

KOL/MCK - User Guide

 © 2024 Carl Peeraer

KOL Extensions
Working with Databases

As with OLE DB, there is no parameter support in this interface, and this greatly simplifies the

code. The TODBCDatabase object serves both for connecting to the database and for

managing transactions (there is no separate object for managing sessions). The TODBCQuery

object is the main workhorse, and can work with almost all data types when retrieving result

fields.

A feature of this interface is the availability of the More method, which allows you to easily get

several results in one request. Sometimes this feature is very useful in terms of improving query

performance. In general, connecting directly through ODBC drivers, bypassing other

intermediaries like ADO, improves work efficiency, and sometimes quite significantly.

8.6.3 KOLIB

This interface is designed specifically for working with Interbase. Package author: Evgeniy

Mikhailichenko aka ECM. Actually, I don't know anything more about this interface at the

moment. (I'll try to find out, then I'll add it).

8.6.4 KOLSQLite

Component for working with SQLite database, author Boguslav Brandys (Poland).

8.6.5 Working with DBF files and other databases

In addition to the above, for KOL there are also two packages for working with DBF files and one

package for working with text tables compatible with the MS Access database.

I. TdkDBKOL - the author of Thaddy de Koning, allows you to read fields from DBF files

directly, bypassing the need to install drivers, solve problems with national encodings,

configure connections, data sources, and so on (if only the files themselves).

II. KOLxBase - ported for KOL by Dmitry Matveev, also allows you to work with DBF files

directly.

III. StrDB - by Mike Talcott (USA). This package allows you to work with text tables in files. The

format of such files is compatible with the MS Access database (through import and export).

8.7 Graphics Extensions

In addition to basic objects for working with images such as raster (BMP), icons (ICO), the main

composition of KOL + KOLadd also contains metafiles (WMF, EMF), which I did not describe

above (however, I will try to find a place for them in this section). And on the KOL website you

can find objects for working with all major graphic formats: JPG, GIF, PNG, PCX, Targa, TIFF and

some others. Here I will only describe some of the packages without going into too much detail.

442

KOL/MCK - User Guide

 © 2024 Carl Peeraer

KOL Extensions
Graphics Extensions

8.7.1 Metafiles WMF, EMF

Metafile support is included in the main KOL package. The TMetafile object type is presented in

the KOLadd module, and allows you to fully work with images of the WMF and EMF types,

namely: load such images into memory, generate new images, and display them on the canvas.

Although metafiles are inherently quite different from bitmaps that store images pixel by pixel,

the interface of the TMetafile object is as close as possible to the interface of a regular single-

frame image, which includes TBitmap. For example, it also has Width and Height properties,

methods for loading an image from various sources and saving it to an output stream and file

.

8.7.1.1 Metafiles - Syntax

TMetafile = object(TObj)

Object type to encapsulate metafile image.

type PMetafile = ̂ TMetafile;

type
 TMetafileHeader = packed record
 Key: Longint;
 Handle: SmallInt;
 Box: TSmallRect;
 Inch: Word;
 Reserved: Longint;
 CheckSum: Word;
 end;

const
 WMFKey = Integer($9AC6CDD7);
 WMFWord = $CDD7;

Metafile Properties

property Handle: THandle;

Returns handle of enchanced metafile.

property Width: Integer;

Native width of the metafile.

property Height: Integer;

Native height of the metafile.

443

92

443

KOL/MCK - User Guide

 © 2024 Carl Peeraer

KOL Extensions
Graphics Extensions

Metafile Methods

destructor Destroy; virtual;

procedure Clear;

function Empty: Boolean;

Returns TRUE if empty

function LoadFromStream(Strm: PStream): Boolean;

Loads emf or wmf file format from stream.

function LoadFromFile(const Filename: AnsiString): Boolean;

Loads emf or wmf from stream.

procedure Draw(DC: HDC; X, Y: Integer);

Draws enchanced metafile on DC.

procedure StretchDraw(DC: HDC; const R: TRect);

Draws enchanced metafile stretched.

function NewMetafile: PMetafile;

Creates metafile object.

function ComputeAldusChecksum(var WMF: TMetafileHeader): Word;

function SetEnhMetaFileBits(p1: UINT; p2: PAnsiChar): HENHMETAFILE; stdcall;

function PlayEnhMetaFile(DC: HDC; p2: HENHMETAFILE; const p3: TRect): BOOL; stdcall;

8.7.2 JPEG images

Support for working with JPEG images is provided by the JpegObj module, the code for which

is based on the source code provided by the Independent JPEG Group. Most of the code is

precompiled and delivered in the form of object files, so, unfortunately, I cannot 100%

guarantee that this code is error-free. Nevertheless, the experience of using this module in my

applications shows a rather significant resistance of its code to faulty data.

The technique for working with JPEG images is not much more complicated than with bitmap

images (TBitmap). In order to load an image, one of the methods of loading from a file or

stream is called for the TJpeg object. Before an image can be drawn on the canvas or assigned

to a bitmap object (TBitmap), a decoding procedure must be performed (for which the

DIBNeeded method is explicitly or implicitly called), during which the JPEG image is decoded

and restored to an internal TBitmap object.

Either immediately after decoding or before decoding starts, the ConvertCMYK2RGB property

must be set to TRUE, otherwise, if the JPEG image is CMYK encoded, the colors will be incorrect.

444

KOL/MCK - User Guide

 © 2024 Carl Peeraer

KOL Extensions
Graphics Extensions

However, if you are sure that images in this format will not come across to your application, you

can leave this property untouched and save a few kilobytes of code.

In the process of loading and decoding large images (which can be decoded for quite a long

time - up to several seconds), it makes sense to use the OnProgress event to display the

progress of the loading process (or finished parts of the decoded display), and be able to

interrupt the operation before the entire decoding operation is completed. if there is a need for

it.

If you need to download not the image itself, but its reduced copy, then the JPEG format has

special tools for accelerating the loading of such thumbnails. It is enough to set the required

scale to the Scale property (the minimum possible value of jsEighth, which corresponds to 1/8 of

the original size).

A TJpeg object allows you to reverse-convert a bitmap to JPEG and save it to a file or stream. To

do this, simply assign the object's Bitmap property some other bitmap of the TBitmap type

(using the ': =' operation, not the Assign! Method), and then execute the appropriate save

method, for example, SavetoFile. Compression is performed immediately before the save is

performed - automatically, or it is possible to call the Compress method at the desired moment.

In this case, it is also possible to control the degree of compression by assigning a pre-required

value to the CompressionQuality property (a number in the range from 1 to 100). When

encoding an image, the OnProgress event can also be used to indicate progress and possible

interruption of the operation.

If the application does not call methods that compress and save the image, then this saves about

30KB of code. In this case, the increase in the size of the application will be about 50K. If both

upload and download are used, it is easy to calculate that the growth in the size of the

application will be about 80K. By the way, this value for KOL applications cannot be considered

negligible. I also cite these figures in order to make it clear that, for example, you should not

store graphic images in resources in JPEG format if there are not many of them and they are

small: the fat decoder code of such resources will eat up the size savings. Not to mention, JPEG is

a lossy compression format, meaning the image is distorted compared to the original.

8.7.3 GIF Images, GIFShow, AniShow

The original KOLGif package was based on code from the famous RxLib library. But by dragging

and dropping the code, I reduced my work, giving up compression and keeping only

decompression. I did this for several reasons.

The first is the licensed purity of the product. As you know, any commercial project must deduct

a certain (small, true) amount in favor of the patent owners. Not that I felt sorry for this money

(especially not for my own, since I do not deal with commercial products), I just consider such a

requirement unlawful, as well as the patent system itself - a brake on progress. / I think it's just

unethical to trade in knowledge. Imagine, as an analogy, that a college degree could be bought

on the market. /

The second consideration is the amount of source code. The smaller it is, the easier it is to

understand, debug, fix all errors. By the way, in the RxLib code such errors, although not fatal,

445

KOL/MCK - User Guide

 © 2024 Carl Peeraer

KOL Extensions
Graphics Extensions

were also found and eliminated by me during the adaptation of the code to the KOL

requirements. (Which ones, I can't remember now, rather, these were not errors, but

shortcomings that led to incorrect display of some GIF images).

The third is the quality of the compression. More precisely, the inability to control and improve it

without the use of special methods. Let me explain what I'm talking about now. As you know,

there are various software products that can create GIF images from other types of images. It is

known that the result is a completely different size GIF-files, that is, the quality of compression is

determined by a rather fine selection of parameters. The quality of compression, for example,

provided by the RxLib library code (in turn borrowed from others by the author, as indicated in

the library text), leaves much to be desired. And I'm not ready to write my own code that can

compete with other GIF compressors and optimizers. It is both more honest and more

convenient to give up this possibility right away (why make a code that is obviously the worst

known analogs?).

However, if anyone wishes to complete the conversion or make their own compressor for Gif by

extending KOLGif, I have no particular objection to that.

I note right away that the code of the KOLGif module is multivariate, and is compiled differently

depending on the conditional compilation symbols declared in the project options.

Namely, it may or may not use the Animation module (symbol USE_ANIMATION_OBJ). If used,

the TGif object does not inherit directly from TObj, but from TAnimation. The only purpose of

such a change in the position in the type hierarchy is the ability to use the universal visual object

TAniShow, capable of displaying (practically - with the same code) not only GIF images, but also

frames compiled programmatically from TBitmap bitmaps and, in general, any objects inherited

from TAnimation. For example, there is my implementation of TFlic, a successor from it, which

provides decoding of AutoDesk animation files (FLIC files).

Another acceptable variation is the ability to abandon your own (converted from RxLib) GIF

decoder, and use the KOLGraphicCompression module from the KOLGraphic package

(USE_KOLGRAPHIC conditional compilation symbol) for this purpose. Experiments have shown

that the difference can be observed only on a very small number of GIF images, moreover, most

often, encoded in clear violations of the GIF format conventions, or simply flawed. Moreover,

only one of these two compressors does not always win. As for the size of the final code added

to the application, KOLGraphic, as a more versatile package, adds a lot more to the weight of the

program. It should be used for GIF decompression only if this package is already used in the

application to work with one or several other graphic formats:

I. GIF decoder (TGifDecoder). The TGifDecoder object can be used on its own if all you need

is to decode individual frames of a GIF animation, decode the first frame, or decode a single

frame of a non-animated GIF image. In this case, a minimum of compiled code will be added

to the application. I hope you can figure out its properties and methods on your own, they

are quite simple, provided with comments and do not require special explanations.

II. Frame object (TGifFrame). This object is a helper object, and is used in the TGif object

implementation to represent individual frames of an animated GIF image. You have to resort

to its properties very rarely if you want to analyze individual frames or provide some

information for the user on them.

III. Main object (TGif). The TGif object type provides all the basic functionality for working with

animated GIFs. For example, it can draw the current frame (methods Draw, DrawTransp,

446

KOL/MCK - User Guide

 © 2024 Carl Peeraer

KOL Extensions
Graphics Extensions

DrawTransparent, StretchDraw, StretchDrawTransp, StretchDrawTransparent), control frame

switching (the Frame property), as well as load and decode the entire GIF image. But it does

not provide time tracking to animate the image correctly.

IV. Visual animation of the Gif image in the window (TGifShow). The TGifShow visual object

is inherited from the main visual object of the KOL package - from TControl. It switches

frames on its own, updating the animation on screen whenever possible when its Animate

property is set to TRUE. / As I already said, instead of it there is an opportunity to use the

TAniShow object from the Animation module, while other formats of animated images

become available.

8.7.4 KOLGraphic Library

Through the efforts of Dmitry aka Dimaxx for the KOL library, Michael Lishke's KOLGraphic

library was converted. This library provides support for a wide variety of graphics formats. Here

is just a list of them:

· Silicon Graphic Images (* .bw, * .rgb, * .rgba, * .sgi)

· Autodesk Images (* .cel, * .pic)

· 1,8,16 & 24 (32) bits per pixel TIFF Images (* .tif, * .tiff)

· Enhanced PostScript images (* .eps)

· Targa Images (* .tga; * .vst; * .icb; * .vda; * .win)

· ZSoft PCX Images (* .pcx; * .dcx, * .pcc; * .scr)

· Kodak Photo CD Images (* .pcd)

· Portable Map Graphic Images (* .ppm, * .pgm, * .pbm)

· Dr. Halo Images (* .cut + * .pal)

· CompuServe GIF Images (* .gif)

· RLA Images (* .rla, * .rpf)

· Photoshop Images (* .psd, * .pdd)

· Paint Shop Pro Images file version 3 & 4 (* .psp)

· Portable Network Graphic Images (* .png)

If you are going to write another program for viewing images with support for a large number

of graphic formats, then this library is very useful. At least in my Zoomer program, I tried it out

with success. Not all declared formats are supported, though not 100% (for example, TIFF files

encoded in FAX3 format are not displayed). But in any case, there is fish for fishlessness and

cancer.

8.7.5 Using GDI + (KOLGdiPlus)

The orientation towards the use of the new graphics library GDI + is very promising. Thanks to

Thaddy de Koning (Netherlands), who adapted Dave Jewell's code for us, programmers using

KOL already have the opportunity to try out the capabilities of this library. As soon as the old

operating systems leave the arena of personal computers, every user of the Windows operating

system will have the gdiplus.dll library preinstalled, and it will be a sin not to take advantage of

its capabilities. (But when will this happen? - people are still in no hurry to part with even

Windows 95 ...).

447

KOL/MCK - User Guide

 © 2024 Carl Peeraer

KOL Extensions
Graphics Extensions

8.7.6 Other image formats

In addition to the above, on the main site you can also find KOLPcx, KOLTga packages. As their

names suggest, they handle (loading and displaying only, though) the PCX and Targa formats.

However, if you need to get not only these two additional formats, then it is more profitable for

working with PCX files, nevertheless, to use the KOLGraphic library, which also has support for

this format.

8.7.7 Additional utilities for working with graphics

I. SmoothDIB - This package provides a TSmoothDIB object that provides a number of

additional capabilities for drawing on DIB bitmaps. Namely, drawing lines and other shapes

from line segments with so-called anti-aliasing. The peculiarity is that the line width is set as a

floating point number, and the drawing itself is done by its own code through the Scanline

property of the TBitmap object.

II. KOLPlotter - A package for drawing graphs of mathematical functions. Author: Alexander

Shakhaylo.

III. Sprite Utils - Sprite engine. There is support for Direct Draw. Author: miek.

IV. BIS - Compress images containing large areas filled with a single color. Author: miek.

V. KOLjanFx - A set of additional graphic effects. Conversion for KOL: Dimaxx.

8.7.8 Open GL: KOLOGL12 and OpenGLContext modules

The KOLOGL12 module not only provides all the Open GL interface declarations, you can also

use the standard opengl module from the compiler distribution for this. Its peculiarity is that it

makes it as economical as possible for the size of the application, which is especially important

for programming with the KOL library. The author of the module, Vyacheslav Gavrik, has found a

great way to bypass the need for mandatory connection of all functions of the Open GL library

interface, and at the same time maintain a high speed of calls to them.

The OpenGLContext module was written by me, and is the simplest OOP add-on over many

functions of the Open GL library API. It provides a Context object through which most of the

work is done, as well as a set of object types for representing textures, vertex arrays, lights,

materials, and more.

8.8 Sound and Video

8.8.1 KOLMediaPlayer

Initially, this object was in the main composition of KOL, but later it was moved to a separate

module. The main reason for this decision was to reduce the dependence of applications on the

MMSystem module, which contains the necessary definitions and is not required by most

applications. Functionally, the TMediaPlayer object from this module is not much different from

the component with which you may have happened in the VCL. But in KOL it is not visual, and

does not automatically provide buttons to control the process of playing music or video. Since

448

KOL/MCK - User Guide

 © 2024 Carl Peeraer

KOL Extensions
Sound and Video

the object uses MCI (Media Control Interface) commands, using this object it is possible to play

any media file for which all the necessary drivers and decoders (codecs) are installed in the

system.

The basic procedure for working with this object is as follows. It is created by the constructor:

NewMediaPlayer(filename, wnd) - the optional parameter file (can be an empty string)

specifies the file to be played, the wnd parameter (it can also be zero for sound files) passes the

object's constructor a handle to the window in which the video image will be played.

High-level properties and methods:

Display - window descriptor for displaying video images;

DisplayRect - rectangle in the Display window for the image;

Width, Height - return the own width and height of the open video file;

Filename - allows you to change the name of the file for playback;

DeviceType - returns the type of the open file, it is not necessary to set it, since in the case of a

file the system itself is able to determine the data format;

DeviceID - returns the logical device identifier, which can be used in low-level commands;

TimeFormat - sets the time format for operating with the length and position in the stream

being played (milliseconds, bytes, frames - for video, samples - for sound, as well as some

formatted values, see the text and system documentation for more details);

Length - returns the length of the file (in units specified by the TimeFormat property);

Position - the current position in the file or on the device (it can be changed if the device

contains several tracks; to get the starting position of the track, use the TrackStartPosition

property);

TrackCount - number of tracks, for devices with multiple tracks;

Track - number of the current track (from 1 to TrackCount);

TrackStartPosition - returns the start position of the current track on the device;

TrackLength - the length of the current track;

Error - error code (if there are no errors, contains 0);

ErrorMessage - text describing the error;

State - the current state of the device (not ready, stopped, playing, recording, searching or

rewinding, etc.);

Wait- set this property to TRUE to perform all operations with synchronization (i.e., return from

any command will occur only upon completion of this operation). By default, all operations are

performed asynchronously, that is, the command is passed to the system for execution, after

which control is returned to your code;

OnNotify - this event is triggered when the previous asynchronous operation completes;

Open- method for opening the file specified by the Filename property. If, when creating an

object, the Filename parameter pointed to an existing file, then the Open method is called for it

automatically;

Alias- a string that, after opening a file, can be used in MCI commands as a device alias. Should

be installed before opening the media file and before changing the file name;

Play(start, length) - starts playback of an open file from the specified position, the length

parameter sets the portion to play. As the length parameter, you can specify the special value –

449

KOL/MCK - User Guide

 © 2024 Carl Peeraer

KOL Extensions
Sound and Video

1, which means that the file will be played until the end of the file. For the start parameter it is

also possible to specify a value of –1, which means "from the current position";

StartRecording(FromPos, ToPos) - starts recording on the recorder. Similar to the Play

method, the special value –1 can also be used for both parameters, with the same semantic

meaning;

Pause - returns TRUE if the device is suspended, it can also be used to programmatically

suspend the device by assigning the TRUE value;

Stop - stops playback or recording;

Close - this method closes the device (but does not necessarily stop playback! To stop, you must

first put the device in the “pause” or “stopped” state);

Ready - TRUE if the device is “ready” (start recording or playback);

Eject - ejects the media from the device, if such a command is provided for it (for example, for

CDAudio);

DoorClose - inverse operation with respect to Eject. The peculiarity of this operation is that an

automatic play or open operation can be performed for the media, if this setting is not disabled

in the operating system. To prevent auto-opening, use the Insert operation;

Insert - similar to DoorClose, but automatic playback does not work;

Present - Returns TRUE if media is inserted into the device.

Next, I will skip a number of low-level properties and methods, I will only say that they allow you

to get more detailed information depending on the type of device and media, control the on

and off of individual channels, sound volume, and so on. I will dwell only on the lowest-level

commands that allow you to send commands directly to the MCI system:

SendCommand(cmd, flags, buffer) - allows you to send a low-level command to the device,

passing, if necessary, some parameters through the buffer, for example.

 There is also a version of this method, asmSendCommand, which is executed with a deliberate

violation of standard communication conventions (it is used in the object implementation itself,

so it was convenient to do this for some code optimization).

In addition, you can always use the mciSendCommand and mciSendString API functions

directly, passing the DeviceID or Device Alias, respectively, as a parameter identifying the

device.

You can download the KOLMediaPlayer module here:

https://www.artwerp.be/kol/kolmediaplayer.zip

8.8.1.1 KOLMediaPlayer - Syntax

TMediaPlayer = object(TObj)

https://www.artwerp.be/kol/kolmediaplayer.zip

450

KOL/MCK - User Guide

 © 2024 Carl Peeraer

KOL Extensions
Sound and Video

MediaPlayer encapsulation object. Can open and play any supported by system multimedia file.

(To play wave only, it is possible to use functions PlaySound..., which can also play it from

memory and from resource).

Please note, that while debugging, You can get application exception therefore standalone

application is working fine. (Such results took place for huge video).

type PMediaPlayer = ̂ TMediaPlayer;

type TMPState = (mpNotReady, mpStopped, mpPlaying, mpRecording, mpSeeking,
mpPaused, mpOpen);

Available states of TMediaPlayer.

type TMPDeviceType = (mmAutoSelect, mmVCR, mmVideodisc, mmOverlay, mmCDAudio,
mmDAT, mmScanner, mmAVIVideo, mmDigitalVideo, mmOther, mmWaveAudio, mmSequencer);

Available device types of TMediaPlayer.

type TMPTimeFormat = (tfMilliseconds, tfHMS, tfMSF, tfFrames, tfSMPTE24,
tfSMPTE25, tfSMPTE30, tfSMPTE30Drop, tfBytes, tfSamples, tfTMSF);

Available time formats, used with properties Length and Position.

type TMPNotifyValue = (nvSuccessful, nvSuperseded, nvAborted, nvFailure);

Available notification flags, which can be passed to TMediaPlayer.OnNotify event handler (if it is

set).

type TMPOnNotify = procedure(Sender: PMediaPlayer; NotifyValue: TMPNotifyValue)
of object;

Event type for TMediaPlayer.OnNotify event.

type TPlayOption = (poLoop, poWait, poNoStopAnotherSound, poNotImportant);

Options to play sound. poLoop, when sound is playing back repeatedly until PlaySoundStop

called. poWait, if sound is playing synchronously (i.e. control returns to application after the

sound event completed). poNoStopAnotherSound means that another sound playing can not be

stopped to free resources needed to play requested sound. poNotImportant means that if

driver busy, function will return immediately returning False (with no sound playing).

type TPlayOptions = set of TPlayOption;

Options, available to play sound from memory or resource or to play standard sound event

using PlaySoundMemory, PlaySoundResourceID, PlaySoundResourceName, PlaySoundEvent.

type TSoundChannel = (chLeft, chRight);

Available sound channels.

type TSoundChannels = set of TSoundChannel;

Set of available sound channels.

TMediaPlayer Properties

451

KOL/MCK - User Guide

 © 2024 Carl Peeraer

KOL Extensions
Sound and Video

property FileName: String;

Name of file, containing multimedia, if any (some multimedia devices do not require file,

corresponding to device rather then file. Such as mmCDAudio, mmScanner, etc. Use in that case

DeviceType property to assign to desired type of multimedia and then open it using Open

method).

When new string is assigned to a FileName, previous media is closed and another one is opened

automatically.

property DeviceType: TMPDeviceType;

Type of multimedia. For opened media, real type is returned. If no multimedia (device or file)

opened, it is possible to set DeviceType to desired type before opening multimedia. Use such

way for opening devices rather then for opening multimedia, stored in files.

property DeviceID: Integer;

Returns DeviceID, corresponded to opened multimedia (0 is returned if no media opened.

property TimeFormat: TMPTimeFormat;

Time format, used to set/retrieve information about Length or Position. Please note, that not all

formats are supported by all multimedia devices.

Only tfMilliseconds (is set by default) supported by all devices. Following table shows what

devices are supporting certain time formats:

tfMilliseconds All multimedia device types

tfBytes mmWaveAudio

tfFrames mmDigitalVideo

tfHMS (hours, minutes, seconds)> mmVCR (video

cassete recorder), mmVideodisc.

 It is necessary to parse retrieved Length or

Position or to prepare value before assigning

it to Position using typecast to THMS.

tfMSF (minutes, seconds, frames)> mmCDAudio,

mmVCR. It is necessary to parse value

retrieved from Length or Position properties

or value to assign to property Position using

typecast to TMSF type.

tfSamples mmWaveAudio

 tfSMPTE24, tfSMPTE25, tfSMPTE30,

tfSMPTE30DROP (Society of Motion Picture

and Television Engineers)

mmVCR, mmSequencer

tfTMSF (tracks, minutes, seconds, frames) mmVCR

452

KOL/MCK - User Guide

 © 2024 Carl Peeraer

KOL Extensions
Sound and Video

property Position: Integer;

Current position in milliseconds. Even if device contains several tracks, this is the position from

starting of first track. To determine position in current Track, subtract TrackStartPosition.

property Track: Integer;

Current track (from 1 to TrackCount). Has no sence, if tracks are not supported by opened

multimedia device, or no tracks present.

property TrackCount: Integer;

Count of tracks for opened multimedia device. If device does not support tracks, or tracks not

present (e.g. there are no tracks found on CD), value 1 is returned by system (but this not a rule

to determine if tracks are available).

property Length: Integer;

Length of multimedia in milliseconds. Even if device has tracks, this the length of entire

multimedia.

property Display: HWnd;

Window to represent animation. It is recommended to create neutral control (e.g. label, or paint

box, and assign its TControl.Handle to this property). Has no sense for multimedia, which

HasVideo = False (no animation presented).

property DisplayRect: TRect;

Rectangle in Display window, where animation is shown while playing animation. To restore

default value, pass Bottom = Top = 0 and Right = Left = 0.

property Error: Integer;

Error code. Is set after every operation. If 0, no errors detected. It is also possible to retrieve

description string for error using property ErrorMessage.

property ErrorMessage: String;

Brief description of Error.

property State: TMPState;

Current state of multimedia.

property Pause: Boolean;

True, if multimedia currently not playing (or not open). Set this property to True to pause

playing, and to False to resume.

property Wait: Boolean;

453

KOL/MCK - User Guide

 © 2024 Carl Peeraer

KOL Extensions
Sound and Video

True, if operations will be performed synchronously (i.e. execution will be continued only after

completing operation). If Wait is False (default), control is returned immediately to application,

without waiting of completing of operation. It is possible in that case to get notification about

finishing of previous operation in OnNotify event handler (if any has been set).

property TrackStartPosition: Integer;

Returns given track starting position (in units, specisied by TimeFormat property. E.g., if

TimeFormat is set to (default) tfMilliseconds, in milliseconds).

property TrackLength: Integer;

Returns given track length (in units, specified by TimeFormat property).

property Width: Integer;

Default width of video display (for multimedia, having video animation).

property Height: Integer;

Default height of video display (for multimedia, having video animation).

property Alias: String;

 Alias for opened device. Must be set before opening (before changing FileName).

property Ready: Boolean;

True if Device is ready.

property IsCompoundDevice: Boolean;

True, if device is compound.

property HasVideo: Boolean;

True, if multimedia has videoanimation.

property HasAudio: Boolean;

True, if multimedia contains audio.

property CanEject: Boolean;

True, if device supports "open door" and "close door" operations.

property CanPlay: Boolean;

True, if multimedia can be played (some of deviceces are only for recording, not for playing).

property CanRecord: Boolean;

True, if multimedia can be used to record (video or/and audio).

454

KOL/MCK - User Guide

 © 2024 Carl Peeraer

KOL Extensions
Sound and Video

property CanSave: Boolean;

True, if multimedia device supports saving to a file.

property Present: Boolean;

True, if CD or videodisc inserted into device.

property AudioOn[Chn: TSoundChannels]: Boolean;

Returns True, if given audio channels (both if [chLeft,chRight], any if []) are "on". This property

also allows to turn desired channels on and off.

property VideoOn: Boolean;

Returns True, if video is "on". Allows to turn video signal on and off.

For "CDAudio" only:

property CDTrackNotAudio: Boolean;

True, if current Track is not audio.

For "digitalvideo":

property DGV_CanFreeze: Boolean;

True, if can freeze.

property DGV_CanLock: Boolean;

True, if can lock.

property DGV_CanReverse: Boolean;

True, if can reverse playing.

property DGV_CanStretchInput: Boolean;

True, if can stretch input.

property DGV_CanStretch: Boolean;

True, if can stretch output.

property DGV_CanTest: Boolean;

True, if supports Test.

property DGV_HasStill: Boolean;

True, if has still images in video.

property DGV_MaxWindows: Integer;

Returns maximum windows supported.

property DGV_MaxRate: Integer;

455

KOL/MCK - User Guide

 © 2024 Carl Peeraer

KOL Extensions
Sound and Video

Returns maximum possible rate (frames/sec).

property DGV_MinRate: Integer;

Returns minimum possible rate (frames/sec).

property DGV_Speed: Integer;

Returns speed of digital video as a ratio between the nominal frame rate and the desired frame

rate where the nominal frame rate is designated as 1000. Half speed is 500 and double speed is

2000. The allowable speed range is dependent on the device and possibly the file, too.

For AVI only (mmDigitalVideo, AVI-format):

property AVI_AudioBreaks: Integer;

Returns the number of times that the audio definitely broke up. (We count one for every time

we're about to write some audio data to the driver, and we notice that it's already played all of

the data we have).

property AVI_FramesSkipped: Integer;

Returns number of frames not drawn during last play. If this number is more than a small

fraction of the number of frames that should have been displayed, things aren't looking good.

property AVI_LastPlaySpeed: Integer;

Returns a number representing how well the last AVI play worked. A result of 1000 indicates that

the AVI sequence took the amount of time to play that it should have; a result of 2000, for

instance, would indicate that a 5-second AVI sequence took 10 seconds to play, implying that

the audio and video were badly broken up.

For "vcr" (video cassete recorder):

property VCR_ClockIncrementRate: Integer;

property VCR_CanDetectLength: Boolean;

True, if can detect Length.

property VCR_CanFreeze: Boolean;

True, if supports command "freeze".

property VCR_CanMonitorSources: Boolean;

True, if can monitor sources.

property VCR_CanPreRoll: Boolean;

True, if can preroll.

property VCR_CanPreview: Boolean;

True, if can preview.

456

KOL/MCK - User Guide

 © 2024 Carl Peeraer

KOL Extensions
Sound and Video

property VCR_CanReverse: Boolean;

True, if can play in reverse direction.

property VCR_CanTest: Boolean;

True, if can test.

property VCR_HasClock: Boolean;

True, if has clock.

property VCR_HasTimeCode: Boolean;

True, if has time code.

property VCR_NumberOfMarks: Integer;

Returns number of marks.

property VCR_SeekAccuracy: Integer;

Returns seek accuracy.

For mmWaveAudio:

property Wave_AvgBytesPerSecond: Integer;

Returns current bytes per second used for playing, recording, and saving.

property Wave_BitsPerSample: Integer;

Returns current bits per sample used for playing, recording, and saving PCM formatted data.

property Wave_SamplesPerSecond: Integer;

Returns current samples per second used for playing, recording, and saving.

TMediaPlayer Methods

function Open: Boolean;

Call this method to open device, which is not correspondent to file. For multimedia, stored in

file, Open is called automatically when FileName property is changed.

Multimedia is always trying to be open shareable first. If it is not possible, second attempt is

made to open multimedia without sharing.

function Play(StartPos, PlayLength: Integer): Boolean;

Call this method to play multimedia. StartPos is relative to starting position of opened

multimedia, even if it has tracks. If value passed for StartPos is -1, current position is used to start

from.

If -1 passed as PlayLength, multimedia is playing to the end of media.

Note, that after some operation (including Play) current position is moved and it is necessary to

pass 0 as StartPos to play multimedia from its starting position again. To provide playing the

457

KOL/MCK - User Guide

 © 2024 Carl Peeraer

KOL Extensions
Sound and Video

same multimedia several times, call:
with MyMediaPlayer do
Play(0, -1);

To Play single track, call:
with MyMediaPlayer do
begin
 Track := N; // set track to desired number
 Play(TrackStartPosition, TrackLength);
end;

procedure Close;

Closes multimedia. Later it can be reopened using Open method. Please remember, that if

CDAudio (e.g.) is playing, it is not stop playing when Close is called. To stop playing, first

perform command Pause := True;

procedure Eject;

Ejects media from device. It is possible to check first, if this operation is supported by the device

- see CanEject.

procedure DoorClose;

Backward operation to Eject - inserts media to device. This operation is very easy and does not

take in consideration if CD data / audio is playing automatically when media is inserted. To

prevent launching CD player or application, defined in autostart.inf file in rootof CD, use Insert

method instead.

procedure DisableAutoPlay;

Be careful when using this method - this affects user settings such as 'Autoplay CD audio disk'

and 'Autorun CD Data disk'. At least do not forget to restore settings later, using

RestoreAutoPlay method. When You use Insert method to insert CD into device, DisableAutoPlay

also is called, but in that case restoring is made automatically at least when TMediaPlayer object

is destroying.

procedure RestoreAutoPlay;

Restores settings CD autoplay settings, changed by calling DisableAutoPlay method (which must

be called earlier to save settings and change it to disable CD autoplay feature). It is not

necessary to call RestoreAutoPlay only in case, when method Insert was used to insert CD into

device (but calling it restores settings therefore - so it is possible to restore settings not only

when object TMediaPlayer destroyed, but earlier.

procedure Insert;

Does the same as DoorClose, but first disables auto play settings, preventing system from

running application defined in Autorun.inf (in CD root) or launching CD player application. Such

settings will be restored at least when TMediaPlayer object is destroyed, but it is possible to call

RestoreAutoPlay earlier (but there is no sence to call it immediately after performing Insert

method - at least wait several seconds or start playing track first).

458

KOL/MCK - User Guide

 © 2024 Carl Peeraer

KOL Extensions
Sound and Video

function Save(const aFileName: String): Boolean;

Saves multimedia to a file. Check first, if this operation is supported by device.

function StartRecording(FromPos, ToPos: Integer): Boolean;

Starts recording. If FromPos is passed -1, recording is starting from current position. If ToPos is

passed -1, recording is continuing up to the end of media.

function Stop: Boolean;

Stops playing back or recording.

function SendCommand(Cmd, Flags: Integer; Buffer: Pointer): Integer;

Low level access to a device. To get know how to use it, see sources.

function NewMediaPlayer(const FileName: String; Window: HWND): PMediaPlayer;

Creates TMediaPlayer instance. If FileName is not empty string, file is opening immediately.

function PlaySoundMemory(Memory: Pointer; Options: TPlayOptions): Boolean;

Call it to play sound already stored in memory. (It is possible to preload sound from resource

(e.g., using Resurce2Stream function) or to load sound from file.

function PlaySoundResourceID(Inst, ResID: Integer; Options: TPlayOptions):
Boolean;

Call it to play sound, stored in resource. It is also possible to stop playing certain sound,

asynchronously playing from a resource, using PlaySoundStopResID.

In this implementation, sound is played from memory and always with poWait option turned on

(i.e. synchronously).

function PlaySoundResourceName(Inst: Integer; const ResName: String; Options:
TPlayOptions): Boolean;

Call it to play sound, stored in (named) resource. It is also possible to stop playing certain sound,

asynchronously playing from a resource, using PlaySoundStopResName.

In this implementation, sound is played from memory and always with poWait option turned on

(i.e. synchronously).

function PlaySoundEvent(const EventName: String; Options: TPlayOptions): Boolean;

Call it to play standard event sound. E.g., 'SystemAsterisk', 'SystemExclamation', 'SystemExit',

'SystemHand', 'SystemQuestion', 'SystemStart' sounds are defined for all Win32

implementations.

function PlaySoundFile(const FileName: String; Options: TPlayOptions): Boolean;

Call it to play waveform audio file. (This also can be done using TMediaPlayer, but for wide set

of audio and video formats).

459

KOL/MCK - User Guide

 © 2024 Carl Peeraer

KOL Extensions
Sound and Video

function PlaySoundStop: Boolean;

Call it to stop playing sounds, which are yet playing (after calling PlaySountXXXXX functions

above to play sounds asynchronously).

function WaveOutChannels(DevID: Integer): TSoundChannels;

Returns available sound output channels for given wave out device. Pass -1 (or WAVE_MAPPER)

to get channels for wave mapper. If only mono output available, [chLeft] is returned.

function WaveOutVolume(DevID: Integer; Chn: TSoundChannel; NewValue: Integer):
Word;

Sets volume for given channel. If NewValue = -1 passed, new value is not set. Always returns

current volume level for a channel (if successful). Volume varies in diapason 0..65535. If passed

value > 65535, low word of NewValue is used to set both chLeft and chRight channels.

TMediaPlayer Events

property OnNotify: TMPOnNotify;

Called when asynchronous operation completed. (By default property Wait is set to False, so all

operations are performed asynchronously, i.e. control is returned to application without of

waiting of completion operation). Please note, that system can make several notifications while

performing operation. To determine if operation completed, check State property.

 E.g., to find where playing is finished, check in OnNotify event handler if State <> mpPlaying.

Though TMediaPlayer works fine with the most of multimedia formats (at least it is tested for

WAV, MID, RMI, AVI (video and sound), MP3 (soound), MPG (video and sound)), there are

some problems with getting notifications about finishing MP3 playing: when OnNotify is called,

State returned is mpPlaying yet. For that case I can advice to check also playing time and

compare it with Length of multimedia.

8.8.2 PlaySoundXXXX

In the same module KOLMediaPlayer there is also a number of functions for playing sound files

in WAV format, allowing you to do this without involving a complex object. Their additional

advantage is that they allow you to play sound not only from a file, but also from other sources,

including from a buffer in RAM.

PlaySoundMemory(mem, options) - plays sound from a buffer in RAM;

PlaySoundResourceID(instance, resid, options) - plays a sound from a resource by resource

identifier in the specified module;

PlaySoundresourceName(instance, resname, options) - plays sound from the resource

specified by the resource name;

PlaySoundEvent(event_name, options) - plays one of the standard system sounds (these

sounds are associated with the names in the Control Panel, Sound, then see the assignment of

sounds to system events and events of installed applications);

460

KOL/MCK - User Guide

 © 2024 Carl Peeraer

KOL Extensions
Sound and Video

PlaySoundFile(filaneme, options) - plays sound from the specified file;

PlaySoundStop - stops playback of all sounds started for playback by all previous

PlaySoundXXXX functions.

All of these functions ultimately refer to the PlaySound API function.

8.8.3 KOLMP3

If you want your application to be able to play MP3 audio files without depending on the

presence of codecs installed on the machine, then this package is what you are looking for. By

the way, as an example of an application, the archive contains a miniature MP3-player, in a

compressed form only 80.5KB. The author of this treasure is Thaddy de Koning (Netherlands).

All source codes are provided for study and use.

8.8.4 Other means for working with sound

In addition to the above, there are several more packages for creating more serious applications

working with sound. I will list only a few:

FFTrealKOL - adaptation for KOL of one of the fastest implementations of the fast Fourier

transform, author Thaddy de Koning (Netherlands);

Kol32Audio- a package for professional work with sound, including the creation of special

effects. Surely useful if you want to create an editor for sound files. The author is the same;

MultiWave- contains an object for simultaneous playback of several dozen audio streams in

WAV format. Mixing is done programmatically, the sound is reproduced using DirectSound.

KOLMidi- package for working with MIDI by Thaddy de Koning. There is a demo of

KOLMidiTest (in a separate archive).

8.9 Working with Archives

8.9.1 TCabFile

Support for Microsoft cabinet files is available in KOL itself. The KOLadd module defines the

TCabFile object type. It is needed in order to perform unpacking from archives of this type. Its

interface is small enough to figure it out on your own, so I won't waste a lot of space on its

description.

8.9.1.1 TCabFile - Syntax

TCABFile = object(TObj)

An object to simplify extracting files from a cabinet (.CAB) files. The only what need to use this

object, setupapi.dll. It is provided with all latest versions of Windows.

type PCABFile = ̂ TCABFile;

92

461

KOL/MCK - User Guide

 © 2024 Carl Peeraer

KOL Extensions
Working with Archives

TCABFile Properties

property Paths[Idx: Integer]: KOLString;

A list of CAB-files. It is stored, when constructing function OpenCABFile called.

property Names[Idx: Integer]: KOLString;

A list of file names, stored in a sequence of CAB files. To get know, how many files are there,

check Count property.

property Count: Integer;

Number of files stored in a sequence of CAB files.

property CurCAB: Integer;

Index of current CAB file in a sequence of CAB files. When OnNextCAB event is called (if any),

CurCAB property is already set to the index of path, what should be provided.

TCABFile Methods

destructor Destroy; virtual;

function Execute: Boolean;

Call this method to extract or enumerate files in CAB. For every file, found during executing,

event OnFile is called (if assigned).

If the event handler (if any) does not provide full target path fora file to extract to, property

TargetPath is applyed (also if it is assigned), or file is extracted to the default directory (usually

the same directory there CAB file is located, or current directory - by a decision of the system).

If a sequence of CAB files is used, and not all names for CAB files are provided (absent or

represented by a AnsiString '?'), an event OnNextCAB is called to obtain the name of the

next CAB file.

function OpenCABFile(const APaths: array of AnsiString): PCABFile;

This function creates TCABFile object, passing a sequence of CAB file names (fully qualified).

It is possible not to provide all names here, or pass '?' AnsiString in place of some of those. For

such files, either an event OnNextCAB will be called, or (and) user will be prompted to browse

file during executing (i.e. Extracting).

461

462

462

460

462

KOL/MCK - User Guide

 © 2024 Carl Peeraer

KOL Extensions
Working with Archives

TCABFile Events

property OnNextCAB: TOnNextCAB;

This event is called, when a series of CAB files is needed and not all CAB file names are provided

(absent or represented by '?' AnsiString).

If this event is not assigned, the user is prompted to browse file.

property OnFile: TOnCABFile;

This event is called for every file found during Execute method.

In an event handler (if any assigned), it is possible to return False to skip file, or to provide

another full target path for file to extract it to, then default. If the event is not assigned, all files

are extracted either to default directory, or to the directory TargetPath , if it is provided.

property TargetPath: KOLString;

Optional target directory to place there extracted files.

8.9.2 KOLZLib

This package contains functions for compressing and decompressing data streams and is based

on the well-known zlib library. In this implementation, error handling is performed not through

raising exceptional states, but through returning error codes from functions, which makes the

application somewhat "lighter". Authors of adaptation: Alexey Shuvalov, later update to version

zlib 1.1.4 was performed by Dimaxx.

The KOLZlib module has been used successfully, at least in the KOLPng package (see the section

on KOL graphical extensions).

8.9.3 KOL_UnZip

Dimaxx also adapted this package for KOL. It is intended only for unpacking Zip archives, and

not password-protected ones. But an important plus: no external DLLs are required, which is

very important for those who adhere to the principle "I carry everything with me".

8.9.4 KOLZip

This is a free version of the TZip component adapted for KOL by Angus Johnson. Adapted by

Boguslav Brandys (Poland). Disadvantages of this package: an external dll is required (it must be

downloaded separately), password protection is not supported, there are other restrictions.

However, you can create ZIP archives.

8.9.5 DIUCL

This package uses algorithms of the renowned UPX executable packer to compress and

decompress data. For use in applications written with KOL, it is enough to add the conditional

compilation symbol KOL to the project option. With a fairly good compression ratio, the

unpacker is very compact, and if you use unpacking only, the application does not grow much at

all. Written by Ralf Junker (Germany).

461

462

463

KOL/MCK - User Guide

 © 2024 Carl Peeraer

KOL Extensions
Working with Archives

If we are only talking about packaging resources, then it makes sense to use the UPX application

wrapper itself. If your application works with its large external files, then this package is

indispensable in order to provide storage of such files on external media in a compressed form.

Packing data before transmitting it over the network can also make sense.

8.9.6 KOLmdvLZH

A package for supporting the LZH compression and decompression algorithm, by Dmitry

Matveev.

8.10 Cryptography

8.10.1 TwoFish

Package provided by: neuron. It is an adaptation for KOL of the well-known TwoFish algorithm.

There is an example of use in the archive.

8.10.2 KOLMD5

The package is provided along with examples. Posted by Thaddy de Koning. The MD5

algorithm has been implemented.

8.10.3 KOLAES

One of the most robust cryptography methods (it is known to be used in RAR archives, which

are practically unbreakable by traditional methods). The package was provided by Dimaxx.

8.10.4 KOLCryptoLib

A large set of cryptography methods (11 pieces) in one bottle. Credit: Dentall (Russia).

8.11 ActiveX

To enable KOL applications to use ActiveX components, the ActiveKOL package was developed,

which includes the ActiveKOL.pas modules (a replacement for ActiveX.pas), KOLComObj and a

special application Tlb2KOL. These modules are much "lighter" than the original ActiveX module

from the Delphi distribution: direct use of such components after installing them in the usual way

for the Delphi environment increases the size of the application so much that the meaning of

using the KOL library would be lost (360K and higher).

This package allows you to install and use almost any ActiveX component for use with KOL, while

keeping the executable file size within reasonable limits. True, sometimes a certain amount of

manual work is required after the automatic generation of the interface code by the Tlb2Kol

utility. But in general, the package is suitable, at least, for use with Delphi compilers from version

464

KOL/MCK - User Guide

 © 2024 Carl Peeraer

KOL Extensions
ActiveX

5 to version 7. The main site has a fair amount of ready-made adaptations of various ActiveX

components, made mainly for Delphi 6.

8.11.1 Active Script

The KOLAxScript package was developed by Thaddy de Koning (Netherlands). The package is

intended for working with Active Script.

8.12 OLE and DDE

8.12.1 KOL DDE

The KOLDDE package contains a DDE client and server with mirrored classes. Author Alexander

Shakhaylo.

8.12.2 Drag-n-Drop

This package provides a drag-and-drop operation from the KOL application to the outside

world. If you have encountered this task before, then you probably know that this operation is

not programmed as elementary as the reverse *. For its organization, at least, work through

OLE-interfaces is required.

The base class (namely, the interface classes are used, otherwise it will not work with OLE) is

TDropSource. There are also classes inherited from it TDropFileSource and TDropTextSource,

almost ready for dragging and dropping file objects or text fragments.

Package author: non. As a bonus, there is a TClipboard object for working with the clipboard.

8.13 NET

Networking in KOL applications is arguably the most disorganized area on the battlefield to

avoid unnecessary code duplication. Especially in terms of tools for connecting over a network

using various protocols. With all the variety of choices, it is difficult to call even half of the

available packages completed. Nevertheless, you can still choose something **.

465

KOL/MCK - User Guide

 © 2024 Carl Peeraer

KOL Extensions
NET

8.13.1 Sockets and protocols

Here is a short list of available packages, their composition and some features. I could not

describe all of them in detail within the framework of this book, even if I wanted to. In general,

there is no particular need for this: all packages are supplied in source code, many are provided

with comments and sometimes good demo applications, so it will not be difficult to figure it out.

I. KOLSocket: This package contains a socket object, along with a visual mirror. As a demo

application, an example of working with Telnet. Author Alexander Shakhaylo (Ukraine).

II. TCPSocket: The author of this package is Roman Vorobets. The package contains definitions

of TCPServer and TCPClient objects, there are MCK mirrors for both objects.

III. TKOLServerSocket & TKOLClientSocket: Adaptation for KOL (with mirrors for MCK)

TServerSocket and TClientSocket components from VCL. Author Alexey Sapronov.

IV. XSocket: Packet for connection via TCP / IP sockets, based on Marat Shamshiev's code.

There are no visual mirrors. Perhaps the most compact in code size option, albeit somewhat

in the Spartan style. The adaptation for KOL was done by Roman Vorobets.

V. ClientServer: Another socket option without visual mirrors. There is a demo client-server.

Posted by Mike Sevbo.

VI. KOL IPC Streams: Objects for working with pipes and milslots * via streams based on the

PStream object from KOL. Written by Thaddy de Koning (Nid.)

VII.Synapse: Library of network functions. The adaptation for KOL belongs to Bohuslav Brandys

(Poland).

VIII.KOL ICS: Library of objects for developing network applications (Http, Smtp, Ping, etc.).

Author Dmitry Zharov aka Gandalf.

IX. KOLHttp: An object for downloading the content of WEB pages from the network via the

http protocol. Author Alexander Shakhaylo (Ukr.).

X. KOLFTP: Object for uploading files from an FTP server and uploading files to an FTP server.

Author Alexander Shakhaylo (Ukr.).

Note: KOLIndy packages I deliberately did not include them in the list, since they are not

completed and, most likely, will not be completed.

8.13.2 Working with ports

Several packages for working with COM-port and LPT-port from different authors.

I. ComPort: Object for working with a COM port, with a visual mirror (plus a bonus in the form

of a visual LED control, like a light bulb). Written by Vasily Pivko.

II. MHComPort: Another component for working with a COM port. Author Dmitry Zharov aka

Gandalf.

III. ForLPT: Object for working with LPT port in Windows 9x / ME operating systems. Author

Alexander Rabotyagov.

466

KOL/MCK - User Guide

 © 2024 Carl Peeraer

KOL Extensions
NET

8.13.3 CGI

It is quite possible with KOL to create very small CGI server applications. An example of how this

is done is available in the WebCountExe application provided with the source code by Andrey

Chebanov. (Look should be in the section "Applications" on the main site).

8.14 System Utilities

This section is for "advanced" programmers who write so-called "system" software. To write

common applications, the packages offered here are not needed at all. Therefore, feel free to

skip this chapter if you are writing regular application programs.

8.14.1 NT services

Windows NT services, unlike conventional applications, work closely with the operating system.

Namely, they are called in the address space and in the context of the operating system, while

getting some capabilities that are not available to regular applications. The list of services

running on your machine can be obtained from the Control Panel, but it is available only for a

user with administrator rights. Many important components of the NT operating system itself are

organized as services. Or, to put it quite differently: the operating system is made up of

components that are services. Thus, making an application a service means that your application

becomes a component of the operating system.

In fact, the API for organizing your application as a service is not too difficult. But with the

proposed set of objects, this work is so radically easier that not using it is just blasphemy.

So, the KOLService package, by Alexander Shakhaylo (Ukraine). Objects:

· TServiceContol - allows you to register a service and manage it (stop, start);

· TService - allows you to organize the application itself, in which it is used as a service;

· TServiceEx- allows the service to be interactive, that is, to have a visual interface with regular

forms and other windows. Why should this object be used instead of TService.

The differences between the process of writing a service and writing a regular application are

very small. The most significant of these is that your code, in the case of services, runs in the

context of an operating system task, and is styled as a set of event handlers for a TService or

TServiceEx object.

But we must not forget that the service actually becomes a component of the operating system.

If it malfunctions or freezes, then this will greatly affect the performance of the entire system. In

addition, there are practically no tools for debugging the service, except for the formation of

your own log files or sound signals. Try, if possible, to debug the algorithms to whom, how to

use them inside the service.

467

KOL/MCK - User Guide

 © 2024 Carl Peeraer

KOL Extensions
System Utilities

8.14.2 Control Panel Applet (CPL)

Boguslaw Brandys' CPL Applet (Poland) contains a TCPLApplet object with a visual mirror that

allows you to organize your application as a control panel applet. In short, this is a way to put a

shortcut to your application in the Control Panel, among other system settings. It is unlikely that

you will need to do this for a regular application, but if you write any driver or system utility,

then keep this possibility in mind.

8.14.3 Writing your own driver

By the way (continuing the previous paragraph), just the KOLDriver archive can help you write

your own device driver (and not only for a mouse pad, but also a serious driver for a real

device). This archive contains a code template, on the basis of which it is quite possible to

complete the task. The author of the package is Thaddy de Koning (Netherlands).

8.14.4 NT Privilege Management

The author of the KOLNTprivileges package is Alexander Shakhaylo (Ukraine). The package, as

you understand, is dedicated to managing NT privileges in operating systems starting with NT.

As a bonus, there is a Pascal-translated isaapi module.

8.15 Other Useful Extensions

8.15.1 Working with shortcuts, registering file extensions

Some of the functions required to perform the tasks specified in the title of this paragraph have

been moved to a separate module Lnk.pas.

CreateLink, CreateLinkDesc - allow you to create a shortcut;

ResolveLink, IsLink2RecycleBin - help in analyzing the existing label;

FileTypeReg, FileTypeRegEx, FileTypeReg2 - useful for creating an application association with

specified file extensions;

FileTypeGetReg - returns information about the current association of a file extension.

Another package, KOLNKDir, is designed to make it easier to locate system directories such as

My Documents, Programs, etc. Author Dmitry Zharov aka Gandalf.

8.15.2 Sharing memory between applications

The KOL_ShareMem package makes it easy to share memory between applications. A memory-

mapped file is used. The author of the adaptation to KOL is neuron.

8.15.3 Saving and restoring form properties

The KOLFormSave package allows an application to save 5 parameters that set the size and

visibility of the form in the registry, and restore them when the application is restarted. Easily

468

KOL/MCK - User Guide

 © 2024 Carl Peeraer

KOL Extensions
Other Useful Extensions

expands if more parameters need to be stored. The author of the package is Alexander

Shakhaylo (Ukraine).

8.15.4 Additional buttons on the title bar

The KOLGets package allows you to add a button (or several) to the header of a form. Author

Alexander Shakhaylo (Ukraine).

8.15.5 Macroassembly in memory (PC Asm)

I created the PCAsm package for my own purposes (and used it in at least one application). Its

purpose is very specific: compilation of assembly text into machine code in memory, with the

possibility of subsequent execution of this code during the same session of the application.

Sounds unusual, doesn't it? Delphi has its own built-in assembler, and it's pretty good.

Unfortunately, it doesn't support macros. There are situations (and I just got one) when it is

almost impossible to do without macros. In my case, it was about the need to optimize the code

to the limit, if it was possible to configure it for a huge combination of all kinds of input

parameters, and it was necessary to choose only one such combination, and exclude all

condition checks from the code. It's about checking conditions in deeply nested loops, of course.

This assembler supports all major machine instructions IBP PC 486, Pentium, and even MMX

instructions. By the way, one of the options is when, in a nested loop, the same operation should

be performed, whenever possible, using MMX instructions from the available set. For different

sets, code is written that does the same job, but using different instructions, and then this code is

compiled with conditional compilation symbols (symbolic variables, if you like), the value of

which is set before calling the compiler depending on the current hardware configuration.

From the point of view of reducing the application code, this approach may even be beneficial in

the case when the direct writing out of all possible variants of the code and including them all in

the final executable module significantly increases the size of the application due to the large

number of variants. Although in my case the options were so great that the direct writing of all

the algorithm options, depending on the hardware configuration and other input conditions, that

I was physically unable to support all these configurations. Thus, the solution to compile the code

into memory "on the fly" turned out to be the only suitable tool.

Perhaps one of the disadvantages of this approach is the need to keep part of the code in the

form of source text (taken from an external file or from resources). Compilation also takes some

time, although I tried to optimize it whenever possible. And the most unpleasant consequence is

that in order to test even the fact of compilation of all code variants, it is necessary to perform

extensive testing. Otherwise, a compilation error can occur in an application that has already

been submitted to the user, and it can be problematic to fix this error. In general, maybe

someone will find some other uses for this package.

469

KOL/MCK - User Guide

 © 2024 Carl Peeraer

KOL Extensions
Other Useful Extensions

8.15.6 Collapse Virtual Machine

The purpose of this package is to further compress application code. In fact, this package is

supported at the source code generation level by the Mirror Classes Kit. But, by default, the

generation of the P-code for the Collapse machine is disabled, and to use this extension, you

need to download the Collapse package, read the instructions, and follow it.

Now, in essence. As you know, the machine code of the IBM PC is far from perfect (in terms of

compactness). The Delphi compiler is also far from perfect. Even manually rewriting a large part

of the KOL library code into assembler is not very helpful in miniaturization. So I decided to

develop a minimal virtual machine that could do everything the processor does, but with more

compact code. Collapse is the result of these efforts.

I will briefly talk about the fundamental structure of the Collapse virtual machine, or P-machine.

As it turned out as a result of successive approximations, a minimal machine should not be able

to do anything on its own, except how to transfer control to subroutines (either in the same

bytecode or to machine procedures), and transfer control within its own code. For

implementation, a two-stack architecture of a pseudo-machine was initially chosen, the high

efficiency of which for the purpose of minimizing code has been known for a very long time

(recall the Forth systems that appeared in the early 70s of the XX century). The computational

stack in the Collapse machine is the same as the normal IBM PC machine stack, and a

dynamically allocated block of memory is used for the return stack.

The result of the work is a really very small bytecode emulator, less than 0.5 Kbytes in size, and

the ability to reduce machine code by 2 or more times. But the main drawback is that P-code

has to be written by someone before it can be compiled into bytecode. So far, no one has

undertaken to make a compiler from the Pascal language to the P-code, therefore, as a

compromise solution, the generation of an alternative P-code was added to the MCK library, in

parallel with the generation of the main Pascal code. Of course, the generation is only for the

form design function, that is, for the code that generates the MCK. But on large forms with a

very large number of visual and non-visual elements, the size of the machine code can exceed

ten kilobytes.

One detail: in order for the Collapse machine to start functioning, the Baselib.pas module must

be connected to the application, which contains a "library" of basic procedures that perform

most of the operations. Initially, quite a lot of functions from this module are connected to the

executable module, so there is no particular point in using the Collapse system for very small

applications. With further growth of the application itself, the increase in growth due to the

inclusion of functions from the Baselib module comes to naught, so when the program reaches

40KB and above, you can already try to use this package.

The Collapse system is tried and tested and fully functional. No significant slowdown in

application performance was noted when using it. Unfortunately, it can only be applied to MCK

forms containing only a basic set of components (all mirrored components on the form must

generate a P-code for themselves, only in this case the P-code for the form can be generated).

Maybe someday a universal compiler will be written from the Pascal language to the P-code of

470

KOL/MCK - User Guide

 © 2024 Carl Peeraer

KOL Extensions
Other Useful Extensions

the Collapse machine, and then the size of the entire application can be reduced by half more

than the usual one.

8.15.7 FormCompact Property

The technology described in the previous chapter is very difficult to use, it requires many

additional manipulations and fine adjustments. In short, it's best not to mess with her. Starting

with version 3.00, an alternative mechanism for compressing the code for the initial construction

of the form was proposed for MCK.

All you need to do is enable the FormCompact property for the TKOLForm component and

recompile the project. The code that does the creation of the form is also roughly halved, but

approximately 1K byte of additional code is added to provide property setting and parsing of

the bytecode generated in this mode. In fact, it is also an interpreter, as in the case of collapse,

but provided with a few more small functions.

As a result, if the construction of the form took less than 2 KB, there will be no noticeable

reduction in the code (but it may increase). Savings will take place in the case of a very large

number of components (especially visual) on the form, and / or a large number of forms. In

general, FormCompact was developed for this case.

8.16 Additional Visual Objects

In this chapter, I will give a brief overview of additional visual elements based on the TControl

object. Some of them were made using legacy techniques, by embedding them in the TObj

object, but this does not mean that they cannot be used, they just turn out to be somewhat

limited in this case.

It should also not be forgotten that the authors made some of their "components" at a time, in

connection with their current needs, and since then they, most likely, have not been updated for

a long time. It is possible that when you try to compile them, some small problems may arise

that you will have to resolve, most likely on your own. Since all the source code is provided, I

think this is not a big problem, especially since most of the extensions presented here are small

in size.

As for the frequency of using the components below, I personally do not use all of them.

Sometimes there is an urgent need for a component, and there is simply no time to make my

own, and then I use something, for example, a list for choosing a font (despite using outdated

technology, it is quite functional). The writing of this chapter, among other things, is also an

attempt to revise the accumulated good, and add to the list of links on your website.

8.16.1 Progress bar

The main site presents the following two alternatives to standard progress:

KOLProgressBar (by A. Shakhaylo) - color progress control with a title (with an MCK mirror);

471

KOL/MCK - User Guide

 © 2024 Carl Peeraer

KOL Extensions
Additional Visual Objects

KOLRARProgress (by Dimaxx) - a progress line very similar to the one used in the RAR archiver.

8.16.2 Track bar (marked ruler)

There is no such visual element in the main KOL set. But there are two alternative

implementations of such a control:

MHTrackBar (author D. Zharov aka Gandalf) and

KOLTrackBar(my own). It was this variant that I suggested as a demonstration of how to make

extensions of the TControl object in the style of pseudo-inheritance. The implementation of this

component uses a number of tricks that significantly reduce the size of the code added to the

application. It may well be used as a visual aid for the construction of additional visual objects

that implement new types of window elements.

8.16.3 Header (tables)

MHHeaderControl(by D. Zharov aka Gandlaf) - the table heading that is used in the list view,

but without the list view itself. I've decided that I don't need such an object, and did not include

it in the main KOL set. And so until now I have not yet come up with what I would need it for.

Nevertheless, you never know who may have what needs.

8.16.4 Font selection

To select a font, it is quite possible to use API functions that allow you to enumerate the installed

fonts in the system and add them to your combo box. This work is automated by a specially

created TKOLFontCombobox object from the EnhCombos package (by Boguslav Brandys,

Poland).

Also, there is a package MHFontDialog (author D. Zharov aka Gandalf), designed to call the

system font selection dialog.

8.16.5 Color selection

In the main set of KOL objects there is only a dialog for choosing a color. But sometimes it is

more convenient to choose a color from a combo box - when the range of colors is much more

limited. For this it may be convenient to use the TKOLColorComboBox object from EnhCombos

(by Boguslav Brandys, Poland).

8.16.6 Disk selection

There are at least two combo boxes available for selecting a drive name:

SPCDriveComboBox (author M. Besschetnov) and

BAPDriveBox (by A. Bartov).

472

KOL/MCK - User Guide

 © 2024 Carl Peeraer

KOL Extensions
Additional Visual Objects

8.16.7 Entering the path to a directory

For this task, you can try using the SPCDirectoryEditBox component (by M. Besschetnov).

8.16.8 Selecting a file name filter

The SPCFilterCombobox component by the same author implements a combo box for selecting

a filter, similar to the one used in the file open dialog.

8.16.9 List of files and directories

There are several ready-made implementations of components for viewing lists of files and / or

directories.

SPCDirectoryListBox, SPCFileListBox (by M. Besschetnov) - lists of directories and files based

on a simple list box.

BAPFileBrowser (by A. Bartov) - almost ready-made file browser window, just paste it on the

form and use it.

DirTreeView (I am the author, if I am not mistaken) - a tree for viewing (and selecting)

directories on the disk.

KOLDirMon (mine again) - viewing the contents of a directory with tracking changes on the disk

and automatically updating the contents.

8.16.10 IP Input

MHIPEdit(by D. Zharov aka Gandalf) - a special field for entering an Internet address (IP). Uses

the appropriate API (it turns out that there is one).

8.16.11 Calendar and date and / or time selection

DateTimePicker (by Boguslav Brandys, Poland) - analogue of the corresponding component

from VCL for date / time selection.

MHMonthCalendar (by D. Zharov aka Gandalf) - a calendar for placing on a form (this is exactly

what is called from the DateTimePicker component by clicking on a special button, but in the

form of a separate modal dialog).

KOLMonthCalendar (author E. Mikhailichenko aka ECM) - another implementation of the

calendar.

8.16.12 Double List

Dialogue for working with a dual list: DualList. Author Boguslav Brandys (Poland) took the idea

from the well-known RxLib package.

473

KOL/MCK - User Guide

 © 2024 Carl Peeraer

KOL Extensions
Additional Visual Objects

8.16.13 Two-position button (up-down)

KOLUpDown(the same author) - implements a button for scrolling values or positions up and

down. I personally prefer to use two small picture buttons for this purpose, but each may have

different preferences.

8.16.14 Button, non-rectangular

Tbitmapbutton from the archive KOL_HHC_Unit (by Tamerlan311) - provides drawing of free-

form buttons.

8.16.15 Extended panel

KOLmdvPanel (by D. Matveev aka mdw) - a panel with additional features.

8.16.16 Label with image

A couple of examples of how you can put a picture on a form without writing your own OnPaint

event handler:

KOLmdvGlyphLabel (by D. Matveev aka mdw) - a label with a picture instead of text.

SPLPicture (by A. Pravdin aka Speller) - a bitmap on the form.

8.16.17 Separator

KOLSeparator(by me) - something like the splitter component from the main set, but the

principle of operation is somewhat different. The idea was carried over from the progenitor XCL

library, which used just such a delimiter.

8.16.18 Table

KOLListEdit (by A. Shakhaylo) - allows you to edit all the cells of the table, which is displayed

using the standard list view;

KOLListData (by A. Shakhaylo) - based on KOLListEdit, can be used as a database table view like

TDBGrid in VCL;

StringGrid (author unknown) - TStringGrid component ported from VCL.

8.16.19 Syntax highlighting

Hilightmemo(by me) - an analogue of a multi-line editor with syntax highlighting, auto-

completion, undo and undo rollbacks. Compact, there are over a dozen different compilation

options to configure the desired set of features;

VMHSyntaxEdit (by D. Zharov aka Gandalf) - another editor with syntax highlighting, ported

from the VCL component;

VMHPasHighlighter - based on VMHSyntaxEdit, specially designed for syntax highlighting of

Pascal source text.

474

KOL/MCK - User Guide

 © 2024 Carl Peeraer

KOL Extensions
Additional Visual Objects

8.16.20 GRush Controls

The author of this package is Alexander Karpinsky aka homm. The package contains a set of

controls with an extremely beautiful appearance (with "live" buttons in the style of "fused

metal"), these visual elements work very quickly, up to the use of MMX for graphics acceleration.

Of course, using this set of components slightly increases the size of the application (from about

20K extra). But sometimes this increase in size can be justified by a significant improvement in

appearance, making your development more competitive in the eyes of users spoiled by

beautiful Windows interfaces. Also important is the fact that the look of the interface will be the

same "cool" regardless of whether XP themes are included or not. It doesn't even depend on

the version of the operating system, and it looks just as attractive in Windows 95.

Seduced by the appearance of these controls, I also decided to have a hand in the

implementation of this package. I have developed a special migration module ToGrush.pas,

which allows you to significantly simplify the transition to using this interface from the usual

boring appearance. Now it is enough to add a link to this module to the end of the list of used

modules, and after recompilation, almost all controls take on a new look. Moreover, if you

enclose this addition in brackets {$ IFDEF USE_GRUSH}, ToGrush {$ ENDIF}, now the

presence of the conditional compilation symbol USE_GRUSH will determine whether this

package is used, or the controls retain their standard interior. This allows, in particular, to quickly

compare the size of the application in the case of using and not using a package, or quickly

rebuild the application for the case of the standard interface, if the application suddenly began

to behave incorrectly, and you suspect that this is the package (although this, of course, is hardly

the case). And, of course, this allows you to very quickly switch to a new interface without

completely redesigning it for new controls.

At the same time, there are a number of peculiarities associated with the absence of some

standard controls in the GRushControls package. For example, it does not have a toolbar. This

visual element, however, can be easily imitated by creating a panel with buttons (fortunately, the

buttons in the package under consideration can contain both a picture and a text).

In the ToGrush module, the toolbar construction function actually takes over the creation of an

analogue of the toolbar control according to this scheme: a panel is created and buttons are

placed on it. An important point is that you can no longer use system images for the control bar

icons, and images whose width differs from the height, as well as images from the image list. In

this case, for example, MCK generates such a code to create a ruler, in which the image

descriptor is passed to the NewToolbar function as a parameter. / In any of the other cases, in

the first call to NewToolbar, 0 is passed in place of this parameter, and images are added later,

and as a result, the NewToolbar function from the ToGrush module cannot associate icons with

the / buttons.

I even went to make changes to the KOL modules, KOLadd and the MCK package so that the

transition to GRushControls can happen without any problems in the case of using MCK. Namely,

the TEdgeStyle, which determines the appearance of the panel border, has been enriched with

the esTransparent and esSolid values. Typically, these styles are no different from esNone (and

correspond to the absence of a visible indented or extruded border). In the case of using

475

KOL/MCK - User Guide

 © 2024 Carl Peeraer

KOL Extensions
Additional Visual Objects

GRushControls through the ToGrush transitional module, this style is used to create the previous

(not in the GRushControls style) panel (in the case of esTransparent, such a panel is immediately

made transparent) and again, without selected borders. The fact is that nested panels are often

used to group controls, but their borders or fill should not make them visible against the

background of parent panels or shapes.

In addition, I moved the ShowQuestionEx function and the ShowQuestion and

ShowMsgModal functions that use it from KOL.pas to the KOLadd.pas module, and added the

above reference to the ToGRush module in conditional compilation brackets to the USES list of

the KOLadd module. Thus, dialogs created by these functions will also automatically use the

GRushControls package if the USE_GRUSH symbol is defined in the application. A similar link to

the ToGrush module has also been added in the KOLDirDialogEx module, so this dialog for

quick directory selection now uses the GRushControls style, if it is defined for the entire

application.

476

KOL/MCK - User Guide

 © 2024 Carl Peeraer

KOL Extensions
Additional Visual Objects

Example of an application with Grush Controls:

8.16.21 Other additional visual elements

Unfortunately, not all extensions created for KOL can be downloaded from the main Web site,

and many of the archives listed here are also represented by links to the original author's

archives. A large number of additional links can be found on friendly sites. For example, the

implementation of elements such as cool bar, all kinds of Gauge and indicators, and many

others.

477

KOL/MCK - User Guide

 © 2024 Carl Peeraer

KOL Extensions
Additional Visual Objects

8.16.22 Tooltips

As you know, tooltips, if configured by the developer, are shown when you hover over some

visual elements of the form. In the VCL, in order for such hints to appear, it was enough to

enable the ShowHint property, and assign some text to the Hint property of the control.

In KOL, properties such as Hint and ShowHint were not originally provided. We got by (at least

personally, I got by) with the so-called tooltips *, which are provided by the system for the

toolbar. On this ruler, tooltips can really be useful, at least in the display mode without text labels

on the buttons. Simply because it is often not always possible to find out from the pictogram

what is done when the corresponding ruler button is pressed, especially when the user is just

getting to know the application or rarely works with it, and is not obliged to remember the

purpose of each button from time to time.

As for the ability to organize floating tips for any controls on the form, I personally take this idea

more negatively than positively. A well-designed interface does not require such a means for

constant reminders, especially since tooltips often obscure controls and interfere with work,

even if they remain transparent to mouse clicks. If the user is constantly using the application,

then such pop-ups can even be annoying (and therefore it would be nice to be able to turn off

such prompts if the user so wishes).

By the way, tooltips are historically preceded by the idea of displaying explanatory information

in a special field, for example, in the status bar. At the same time, at least such prompts are not

intrusive, and do not obscure the "working surface" of the form.

Nevertheless, tips are still needed, and this is evidenced by the fact that the site contains several

packages of various authors that implement a similar opportunity. Ultimately, I agreed with the

requirement to include official support for pop-up labels in KOL, but as conditionally compiled

code. In order for the hints to become available for the KOL application, it is now enough to

include the conditional compilation symbol USE_MHTOOLTIP, and the Hint field, in particular,

automatically becomes available. Of course, to use the hints mechanism from D. Zharov (aka

Gandalf) in the project, you will need to download and unpack a small archive with additional

included code (KOLMHTooltips.pas module).

The KOLMHTooltips module, is located in the https://www.artwerp.be/kol/kol-mck-

master_3.23.zip archive.

8.17 XP Themes

Beauty is a terrible force.

Consider especially the meaning of the word scary.

To connect to an XP themes application, you just need to add a special resource containing a

manifest to it, or put a manifest file named <your_application_name> .exe.manifest. As a

result, however, the application does not always work correctly and displays as it should. It is for

https://www.artwerp.be/kol/kol-mck-master_3.23.zip
https://www.artwerp.be/kol/kol-mck-master_3.23.zip

478

KOL/MCK - User Guide

 © 2024 Carl Peeraer

KOL Extensions
XP Themes

this reason that I always prefer the second use case for the manifest - with an external file. It can

always be deleted, including if the user has problems due to the connection of the manifest, you

can simply advise in response to his complaint to delete this file - which is much faster than

passing him a version of the distribution kit in which the manifest resource is not included in

executable module.

It's no secret that by adding an external manifest file, you can try to "improve" the appearance

of any 32-bit application, even made and released before the advent of the XP operating

system. I wonder how many of you have tried to improve the Delphi shell interface this way. For

example, I managed to achieve a positive effect for Delphi 6 by putting the manifest file

Delphi32.exe.manifest in its \ bin directory. Version 5, however, could not start after this

improvement. But this trick passed with a bang for Delphi 2. At least, the bookmarks of the

pages of the edited modules have become more distinguishable, and now you can clearly see

which bookmark is active.

In fact, things are not so simple, and in order for the themes to start working correctly,

something must be added in the code. At a minimum, you need to call the

InitCommonControls API function (which is executed by itself if you already use "general"

controls like list view or tree view in the application, but which must be called additionally if

there are no such visual objects in the application).

To correctly connect themes to the XP MCK application, it is recommended to use the

TKOLMHXP component, the author of which is Dmitry Zharov aka Gandalf. This component will

provide both the connection of the manifest (moreover, it is possible to choose the connection

method: as a resource or as an external file), and call the required API functions. In addition, with

its help, you can correctly fill in the fields of the manifest (which is actually an XML document).

Although the values of these fields have no effect on the functioning of the manifest.

The appearance of some controls may differ from what was expected to be seen when

connecting the manifest. For example, RichEdit does not want to render using XP themes

until you add the conditional compilation symbol GRAPHCTL_XPSTYLES (remember to rebuild -

Build - the project). This is done because additional code is required to work correctly with the

manifest, and this code is not needed at all if you do not intend to use the manifest (or the

appearance of the RichEdit window with a regular frame does not upset you, and saving a few

dozen bytes of code is more important).

Similar problems are found for tabbed pages - TabControl. When creating it, I decided to use a

regular panel as a background for each page, and it is in no way affected by the manifest. As a

result, the inside of the page looks a little faded compared to the colorful off-page views. To fix

this problem, add the conditional compilation symbol NEW_ALIGN (after sufficient testing, and

possibly very soon, this version of the code will be standard, while the previous version of the

alignment will, on the contrary, become optional).

It should also be noted that when connecting the manifest, there may be problems with the

transparency of many types of controls (for which the Transparent = true property). Some of

them turn black, some are not displayed correctly. To solve problems with the toolbar, they had

479

KOL/MCK - User Guide

 © 2024 Carl Peeraer

KOL Extensions
XP Themes

to go to unprecedented measures altogether: his MCK mirror had to add the FixFlatXP

property, set by default, which controls code generation in such a way as to avoid the

appearance of a black bar instead of the toolbar. That not only slightly increases the code, but

also prohibits the use of certain combinations of options.

8.18 Extensions of MCK itself

8.18.1 Improved font customization

The KOLFontEditor package builds in the Delphi environment a font editor of the TKOLFont

type, which allows you to customize the font visually in the dialog (at the development stage).

Without this magic extension, the name of the font will have to be typed on the keyboard. The

author of the package is Alexander aka Speller (Russia, Primorye).

8.18.2 Alternative component icons

The KOLmirrosGem package contains an alternative set of icons for MCK mirror components.

Author Roman Vorobets.

Working with Extensions

To install extensions that have mirrored MCK classes, you can install packages
containing mirrors of these (visual or non-visual) objects.

482

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Working with Extensions

9 Working with Extensions

· Enter topic text here.

· Using Extensions

· Developing your own Extensions

o Development of non-visual extensions

o Development of visual extensions (controls)

9.1 Installing Extensions

To install extensions that have mirrored MCK classes, you can install packages containing mirrors

of these (visual or non-visual) objects. If such packages are not contained in the distribution

(supplied) archive, or there is no package version suitable for your version of Delphi, then you

can create them yourself by adding modules containing the Register function to them. It is the

Register function that provides registration of the components for placing them on the Delphi

component line.

But it is very important not to forget that with each update of KOL and MCK, all packages that

depend on the MCK must be fully compiled (Build). If you have a large number of such

additionally installed packages, it is not surprising to forget to rebuild any of the packages. In this

case, I can offer a simple solution: do not install the MirrorKOLPackageXX.dpk package, and a

bunch of additional packages, but create your own MCK package, where you include all the

modules from the main package, and from all the packages that you need to install. In this case,

updating the version will be greatly simplified, since it will be enough to rebuild only this one

package.

In addition, extensions, even with design-time mirrors, are quite possible to use without setting

them to the component palette. Of course, you have to write the code for constructing such

objects yourself. Or, having installed such extensions temporarily, copy (and correct if necessary)

the code generated by MCK from the inc file into the OnFormCreate event, and then remove

the extension from the ruler.

9.2 Using Extensions

In order to use the extension, you first need to refer to it. Namely, to register a link to the

extension in the compiler's uses directive, while specifying the correct path to the source (or

compiled) extension files in the project options. And then create extension objects.

Usually, for extended objects, as well as for basic KOL objects, the constructor function

NewXXXXX is defined, which returns a pointer to the created object. But sometimes there is no

such function, and then the call to the constructor should look like the old Turbo Pascal: new

(name_of_object_variable, Create); Here the new function is built in and the Create

constructor is provided by all simple Object Pascal objects. Instead of an identifier

name_of_object_variable you must provide your own name for the constructed variable.

482

482

483

483

484

483

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Working with Extensions
Using Extensions

If you have an MCK mirror, if you've installed it, it's even easier to use: just drop the mirror

component on the form and configure its options. In this case, from the above list of priorities,

there is usually only the indication of the path to the source files in the project property (if these

paths are not already known to the compiler).

Many components can themselves correctly ensure the presence and correct placement of a

reference to the required unit in the uses directive. But sometimes the machine malfunctions,

which can lead to misunderstandings. Namely, in the directive uses the reference to the modules

of the extension itself and its mirrors fall into the wrong positions when the addition is

performed by the Delphi environment itself at the moment of throwing the component onto the

form.

In this case, the project refuses to compile, begins to require files that are completely

unnecessary for it (the same designintf.pas) or resent the mismatch of the version of the system

files. All you need to do is tweak the uses cluster by sending references to VCL units (and mirrors

are exactly VCL units) inside protective brackets {$ IFNDEF KOL_MCK}… {$ ENDIF}...

9.3 Developing your own Extensions

If you like to ride - love to carry sledges.

(Russian folk proverb)

This topic was brought up by KOL programmers almost immediately after the project was born.

There are already a number of articles and so-called tutorials * devoted to this topic. In this

book, I will venture to dwell on this issue once again, at least briefly.

9.3.1 Development of non-visual extensions

First of all, I will immediately note that the development of a non-visual extension is not a

problem at all. It is enough to inherit your object from TObj, and then do whatever you want

with it. Or rather what you need. Likewise, there are no major problems creating an MCK mirror

for an extension built in this way. For this, another module is formed, in which the mirror class

itself, inherited from TKOLObject, and the Register procedure are located. That's it, you can

create a package and install it (do not forget to draw an icon and place it in a dcr file, as you

usually do when developing Delphi VCL components). The problem is easily approximated for

the case when several objects are defined in one module, for each of which it is necessary to

have its own mirror class.

For example, you can look at the source codes of any available non-visual extension, of which

there are countless numbers.

484

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Working with Extensions
Developing your own Extensions

9.3.2 Development of visual extensions (controls)

A much more serious topic is the development of your own visual object. It should be noted

right away that it is not customary in KOL to create such visual extensions simply because you

wanted to slightly tweak the setting of the initial properties of any existing visual component.

I remember the early days of Delphi's triumphant march. Every aspiring programmer was happy

to take advantage of the incredible simplicity of the new mechanism for creating their own

components: hundreds of "round button" or "light bulb" components appeared. More often than

not, there were much fewer really useful components that really extend the capabilities of the

standard library.

Initially, many developers of visual components took the path of "embedding" the TControl

visual object inside its successor from TObj. But this method is fraught with the fact that the

"component" formed in this way will not be able to provide all the necessary levers to control

the object, hiding its renderer inside. Or you have to write an incredible amount of code that will

provide access to all the necessary properties of the new visual object. Or, to expose the

TControl object to the outside through a property or a field open to all the winds, which is also

not very nice (And the call to any property will now look like MyObj.Control.Width, eg).

Another problem that arises when using the method of "injecting" a TControl object inside its

inheritor from TObj is the problem of correctly deleting used objects. You can add your object

to the parent using the Add2AutoFree method, but then you cannot directly destroy it using the

Free method or the Free_And_Nil procedure: when the parent is destroyed, the destructor will

be executed again, and the program will most likely break at the exit. It is more correct in this

case to add the container object to the list of objects of automatic destruction of the most

controlled visual control included in it. And then it will be possible to destroy it by calling either a

special method of the enclosing object, which will call the Free method for the control, or

provide direct access to this control in its descendant TObj,

Unfortunately, there were even "tutorials" and the first visual extensions using this technique of

embedding inside TObj before I made the necessary efforts and sent component creativity on

the right track.

The correct mechanism for creating your own visual extension is inheritance after all. If a

fundamentally new visual element is created that is absent in the library, then it must be

inherited from the TControl object, and if an existing extension is used as the base one, then it

must be inherited from it. Although, in life, examples of inheritance from extensions have not yet

been noticed (which, by the way, is not bad at all for the purpose of saving application size: the

lower the hierarchy level, the less memory is allocated for virtual method tables).

But there is one "BUT" here. Unlike VCL, KOL does not use virtual constructors. It is customary

here to define NewXXXX functions (parameters) for constructing objects. It would seem, so what:

we create a new type of object, write a function for it NewMyControl (…): PMyControl and ...

485

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Working with Extensions
Developing your own Extensions

And here the problem begins: what to write in the code of this function, if the creation of the

TControl ancestor object should be at least the _NewControl function, and it can only create an

object of the TControl type, but not its successor.

In fact, the problem arises only if new fields are added to the inherited object (not to mention

new virtual methods, practice has shown that you can do without them just fine). If only non-

virtual methods are added, then the problem is solved very simply: it is enough to call

_NewControl inside your constructor, and return exactly this result at the output, casting it to the

required type (PMyControl). Unfortunately, creating a truly new object is almost never complete

without adding new fields, so the problem persists.

As a result, the following convention was adopted: for an object inherited from TControl, new

fields are added through an additional structure or object, for which the CustomData and

CustomObj properties are used.

You can use either the CustomData property (if a simple structure is enough to store new fields),

or CustomObj (if you want to get some kind of benefit from the object as a keeper of new

fields), or both (but usually one of them is enough). When an object of type TControl is

destroyed, its CustomData and CustomObj fields are destroyed automatically, and the FreeMem

function is used to delete the structure pointed to by CustomData, and the Free method is used

to destroy the CustomObj object.

// Note: The benefit of using the CustomObj object may be, at least, the ability to define its own

destructor for it, in which any other resources allocated during operation will be freed //.

As a result, the number of fields of the TControl object in the descendant does not change. This

makes it possible to do the same as in the previous case: in your "constructor" NewMyControl,

call the _NewControl function to construct a visual object, and at the output, cast the resulting

object to the type PMyControl...

An additional plus of this approach is that your extension continues to use the same single table

of virtual methods of its successor TControl (we have already agreed that you will not add new

virtual methods, otherwise the above trick is impossible). This means that the increase in the

code will occur only by the size of the code of the new methods used in the application.

And, as I said before, there is a certain amount of reading material specifically for those who

wish to create their own extensions, visual and non-visual. You can find them on the KOL and

MCK sites, as well as numerous examples of such extensions. So I will take the liberty of reducing

the length of this document and avoiding unnecessary duplication of information.

Appendix

The idea of the need for this chapter came to me when, once again, looking at the
forum, I found a question that had already been asked many times, was answered many
times, entered into the FAQ and FAQ, but continues to be asked again and again, and
sometimes even by people, who started writing on KOL not yesterday.

488

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Appendix

10 Appendix

· Errors of programmers starting to learn KOL

· Developer Tools

· Demonstration Examples

· KOL with Classes instead of Objects

10.1 Errors of programmers starting to learn KOL

I didn't even notice the elephant ...

(Krylov's Fable)

The idea of the need for this chapter came to me when, once again, looking at the forum, I

found a question that had already been asked many times, was answered many times, entered

into the FAQ and FAQ, but continues to be asked again and again, and sometimes even by

people, who started writing on KOL not yesterday. I hope that having another source with

answers to such questions will help reduce the number of such errors, leaving room on the

forum for more meaningful discussions. Some of the problems presented here have already

been described in the relevant sections of this book. However, it will probably not be

superfluous to bring them all together and discuss in even more detail. I'll try to sort the errors

by their repetition rate: the first will be the ones with the highest rating in the list of questions

from the developers.

1. Assigning an event handler using the MakeMethod function and typecasting

to TOnSomeEvent. ("Why isn't my handler responding to the event?")

Usually a similar problem occurs among people who are even quite familiar with the Pascal

language, but do not think especially about what machine code is formed as a result of the

compiler's work. / Don't worry, the vast majority of programmers don't think about it. And they

do the right thing: that is why compilers exist to think not about what machine code will be

obtained from the source code in a High Level Language, but to think only about the problem to

be solved. /

It looks like this. You are not trying to assign an object method to an event handler, but a regular

procedure. For example, like this:

procedure MyOnClick (Sender: PObj);
begin
 ... some code ...
end;
...
MyControl.OnEvent: = TOnEvent (MakeMethod (nil, @ MyOnClick));

At first glance, everything is correct here, and the description of the MyOnClick function is quite

consistent with the description of the handler type.
TOnMessage = procedure (Sender: PObj) of object;

488

491

491

494

489

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Appendix
Errors of programmers starting to learn KOL

But in fact, this description is not entirely correct, namely, the matter is in the boldface phrase of

object, which indicates to the compiler that a handler of this type should not be a simple

procedure, but a method of an object. The difference between a method and a simple

procedure is, in fact, in the presence of a hidden additional (first in order) parameter - a pointer

to the object for which the method is called. In order to formally reconcile this discrepancy in the

number and order of parameters, it is enough to add one more parameter, just the first in order,

to a simple procedure. Its name, of course, does not matter; the type can be a pointer or any

other type of the same size. For example, the following fix to the handler header will put

everything in place:

procedure MyOnClick (DummySelf, Sender: PControl);

Why didn't the previous version work? The explanation is quite simple: instead of the formal

Sender parameter, an object pointer nil fell (exactly in accordance with how your method was

"created" by the MakeMethod function), and the Sender parameter itself did not reach the

handler at all, being left out.

And if we remember about the implementation of the parameter passing mechanism in Pascal

procedures, it becomes clear why the incorrect version of the header did not necessarily lead to

much more fatal consequences. The first three parameters, which fit into double words (32 bits

on the PC platform, or 4 bytes), are transferred through the processor registers EAX, EDX and

ECX. The absence of one parameter in the description of the handler led to the confusion in the

procedure of the order of the parameters passed through the registers, and nothing more. Note

that in the case of an agreement on passing parameters through the machine stack, as it

happens in C, or when using the stdcall directive, the very first attempt to access an incorrectly

declared function would most likely lead to a stack level violation and an immediate application

crash. Perhaps, in this case, there would be more sense in such behavior: at least, it would

become clear immediately that something is really wrong on this site - compared to the tacit

disregard of the processor of his duties, in our case. However, if an incorrectly passed parameter

is used in the handler, then access to the fields of the object, which was replaced by the nil

pointer, will also be immediately detected when trying to execute the handler.

2. "Can't install MCK", "compile MCK application", asks for some designintf file,

proxies ", and the like

Some people who ask this question sometimes get straight to the point and ask me to send

them this ill-fated file. In fact, such a file is not needed at all, and the only problem is not having

read the instructions for creating an MCK project carefully enough. All you need to do is close

the VCL project prototype and open the "true" MCK project - with the name specified in the

projectDest property of the TKOLProject component.

Sometimes the same trouble happens with the previously created MCK project. The reason for

the breakdown is usually the loss of the conditional compilation symbol KOL_MCK. It could get

lost, for example, as a result of deleting an unnecessary, at first glance, file with the drc extension

in the project directory (or you could forget to take it with you, transferring the project to

490

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Appendix
Errors of programmers starting to learn KOL

another machine or to another folder). The cure is very simple: open a dialog with project

properties and add the KOL_MCK symbol manually to the list of conditional compilation symbols

(Conditional Defines, on the Directories / Conditionals tab - for all Delphi versions, at least from

Delphi2 to Delphi7, this tab takes place).

The reason designintf is starting to be required is, as it should be clear by now, in the presence

of a reference to it in the mirror.pas module, which is the main one in the MCK package. All MCK

modules have a link to the mirror.pas module, closed from the prying eyes of the compiler by

the conditional construct {$ IFNDEF KOL_MCK}… {$ ENDIF}. This is, so to speak, part of a trick

that allows MCK to exist and trick the Delphi environment at design time by passing off a KOL

project as a respectable VCL project.

A completely similar phenomenon can occur with an application in which the KOL_MCK symbol

is present, and has not disappeared anywhere. For example, if, when adding any MCK

component to a form, a reference to the MCK module (for example, to mckCtrls.pas) will be

inserted outside the above brackets {$ IFNDEF KOL_MCK}… {$ ENDIF}. In this case, the compiler's

message may be somewhat different: for example, that a certain module was compiled with a

different version of the VCL, and as a result, compilation cannot be continued. The solution is the

same: find the module in the USES section, the link to which is in the wrong position, and move it

inside the brackets.

Interestingly, the experience of the first struggle with such mistakes does not set you on the

right path once and for all. There is a very high chance that after successfully working on one or

even several projects developed using MCK, you will again come across this message, and you

will not be able to immediately remember what the solution to the problem is.

3. A KOL project containing two or more forms is not working properly

More often than not, the problem is in the use (or rather, non-use) of the Applet object. If the

project uses MCK, this means that the TKOLApplet component must be dropped onto the main

form. In case of programming without using MCK, you need to execute the following code:
Applet: = NewApplet ('Title');

And only then create all forms as children of the applet:
Form1: = NewForm (Applet, 'Form1');

And most importantly, the Run procedure must be called with this special purpose object as a

parameter:
Run (Applet);

In the section on this object, I have already explained that the Applet is needed, among other

things, to provide control over the flow of messages between multiple forms. With a separate

Applet object, all forms in the project become "children" of the Applet object, which in this case

acts as the application button on the taskbar.

In KOL / MCK projects, the Applet global variable is similar to the Application global variable of

type TApplication in VCL projects. But, unlike the VCL, the use of the Applet is optional. In the

491

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Appendix
Errors of programmers starting to learn KOL

case of a simple application from one form, you can often do without using this object. At least,

if you do not use other special features of this object, namely: hiding the application button on

the taskbar, working with the icon in the system tray, and others. This will save another half a

kilobyte of code, which can be noticeable for a small application.

10.2 Developer Tools

Of course, the main developer's tool is the programming environment. I prefer to use Delphi,

and among all the other versions, Delphi 5 and Delphi 6 are the optimal ones. Someone prefers

licensed free products such as Free Pascal and Lazarus. But this chapter will focus on additional

tools that can be useful for all sorts of utilitarian work, even those that, it would seem, have

nothing to do with programming itself. For example, to publish your work on the World Wide

Web.

Part of the described toolkit exists in nature by itself, but I will allow myself to mention such

means, because, to some extent, this is also an experience, and it can and should be transmitted

and disseminated. Other tools have been developed using the KOL library by various authors

and are often indispensable as well. Most of these tools can be found in the Tools section of the

main KOL WEB site.

· DClear - utility for cleaning Delphi project folders.

· DfmUn2An- converts dfm file resource (s) from Unicode to Ansi, allowing you to port

applications developed in new versions of Delphi (6, 7) to an older format (4, 5). Author:

Bartov Adeksandr.

· DiffLines - a program for line-by-line comparison of very large files (up to 4 gigabytes).

· MCKAppExpert - creates an MCK application template. Author: Thaddy de Koning.

· MCKAppExpert200 - similar to the previous one, but compatible with Delphi2009-2010.

· xHelpGen - help generator based on source code.

10.3 Demonstration Examples

Demos are one of the primary sources for exploring a library, component suite, and other

development toolkit. First of all, because, unlike conventional documentation, they not only

describe what can be done, but also show how it is done correctly. For KOL, there is also a set of

such examples, made, most often, hot on the heels of discussing a problem, or in the process of

explaining how to use this or that library feature for any urgent tasks.

All of these examples (and a few others) can be downloaded from the main KOL site:

http://f0460945.xsph.ru/ - in the Downloads section:

DemoEmpty - empty application;

DemoKOLonly - a few simple projects on KOL without using MCK;

adv - demonstration of a rotating font;

Demo2Forms - two forms per project;

http://f0460945.xsph.ru/

492

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Appendix
Demonstration Examples

DemoModalForm - calling a subform modally;

DemoModalHide - calling a modal form with its hiding at the end of the dialogue;

DemoModalVCL2KOL - Calling a KOL form from a VCL application - modal calling a KOL form

from a VCL application (the KOL form is located in the DLL);

DemoVCL2KOLdll - Calling the KOL form from a VCL application is modeless;

Demo2NonModalForms - two modeless forms are called from the main form - two forms are

called modeless (but once);

DemoFrames - use of frames;

DemoSplash - splash form;

DemoStayOnTop - on top of all windows;

DemoMDI - simple MDI application;

DemoDynamicMenus - dynamic menus;

DemoBitmap2PaintBox - drawing a bitmap in the drawer;

DemoKOLBitmap - loading and drawing a bmp file;

DemoOGL1 - demonstration of calling Open GL functions from a KOL application;

ActionsDemo - demonstration of TActions;

DemoCABExtract - an example of unpacking a CAB file;

DemoClientServer - network connection (sockets);

DemoListViewCheckboxes - general list with selection flags;

DemoTreeViewDrag - dragging tree nodes;

DemoProgressBar - progress;

DemoRichEdit - formatted text;

DemoWordWrapBitBtn - BitBtn button with text wrapping;

DemoMyException - exceptions in KOL;

DemoShellBrowser - list of files;

DemoNoFlicks

DemoThread - multithreading;

DemoTrayIcon - tray icon;

DemoTrayOnly - only the tray icon, the form is not visible;

tictactoe - tic-tac-toe.

493

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Appendix
Demonstration Examples

Piano Chords Maker - Program by Carl Peeraer, the translator of this manual. Info and

Download: https://www.artwerp.be/akkoorden/

VrtDrive - Assign Path to Drive Letter: Program by Carl Peeraer, the translator of this manual.

Info and Download: https://www.artwerp.be/vrtdrive/

https://www.artwerp.be/akkoorden/
https://www.artwerp.be/vrtdrive/

494

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Appendix
Demonstration Examples

10.4 KOL with Classes instead of Objects

Attention: everything that is written in this application, starting from version 3.00, is no longer

relevant at all - classes in KOL are no longer needed and are not supported. The main thing is

that this mechanism existed, is available in the archives of the source codes of previous versions,

and you can always resume it in case of urgent need.

In order for KOL projects to be successfully compiled by the Free Pascal compiler version 1.xx.xx,

that is, even when this wonderful compiler did not support simple Object Pascal objects, a

version of the KOL library code was specially "created" for this purpose.

I put "created" in quotation marks because, in fact, the second version of the same KOL.pas

module was not created, it would be simply unimaginably difficult to constantly synchronize all

changes in two such large modules (I do not always succeed in one all agree). At the same time,

the use of constructions {$ IFDEF…}… {$ ELSE}… {$ ENDIF} to implement such a variation of the

code, when in the case of adding any symbol of conditional compilation, it was also rejected.

First, it would clutter up the source code, which is already difficult to understand. And secondly, it

could have confused the Delphi IDE and could well have confused its Code Completion and

Code Navigation subsystems.

495

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Appendix
KOL with Classes instead of Objects

As a result, a combined approach was chosen using a specially designed external preprocessor

GLUECUT (this name has nothing to do with glitch, and is a combination of two English words

"glue" and "cut"). This application can be used not only for the purpose of converting the KOL

module (and related) into classes, but also for any other tasks of a similar nature that require a

powerful text processor.

Why is the approach combined? The answer is that in the process of processing the text of the

module, a set of rules is used to control the transformation of the input text into the output,

which can change in different parts. Sections are set by "tags" in the source file, which are

comments of the form // [...], located from the beginning of the line and occupying the entire

line. The rules allow you to set the replacement of specified substrings, as well as manipulate

whole strings. That is, the content of the input text is partially used, and some of the information

about what and how to replace is in an external command file.

For example, if you have to write @ Self in KOL, because Self is the object itself, and you need a

pointer to this object, then in the case of using classes, the @ sign should be eliminated, since

the class instance variable itself is already a pointer. View rule
REPLACE [@Self] [Self]

- will perform all such replacements.

In addition, the rules allow you to bypass or replace specially marked sections of code, and in

this case, short comments in curly braces are used as labels, for example, all sections {-} ... {+}

when copying the source text into the output can be skipped by the rule
SKIP [{-}] [{+}]

In a sense, an analogue of conditional compilation is the opposite construction, which allows you

to insert text for the future input variant for classes into the source code, but so that in the

source code itself, this text will be a pure comment from the point of view of the Pascal

compiler:
{++} (* TObj = class; *) {-}

Such a replacement is implemented in the command preprocessor language with a couple of

rules
REPLACE [{++} (*] []
REPLACE [*) {-}] []

As you can see, everything is simple. A developer using an old version of the Free Pascal

compiler, or simply preferring classes, having received (downloaded, updated) a new version of

the KOL.pas file, simply runs a bat file that calls the GLUECUT utility with the required

parameters, and as a result, a KOL version with classes.

Finally, I will add that, starting from version 2.10, the Free Pascal compiler fully supports simple

Object Pascal objects, and there is no longer a special need for converting KOL to classes.

Nevertheless, using classes for some purpose may still be useful to someone, so I felt it

necessary to provide information about this possibility.

496

KOL/MCK - User Guide

 © 2024 Carl Peeraer

Made on rainy days in 2021, 2022, 2023 and 2024...

Vladimir Kladov
Creator of KOL / MCK and ALL the documentation

	Tables
	Table of Contents
	Foreword
	Vladimir Kladov
	What's new?

	Introduction
	KOL Start
	KOL architectural concepts
	Further development of KOL.

	First conclusions
	Save memory costs

	Mirror Classes Kit
	Search for information...
	Compatibility with VLC projects
	KOL and the CBuilder compiler

	Installing KOL and MCK
	Installing KOL
	Installing MCK
	KOL64 and Free Pascal
	Conditional Compilation Symbols

	Programming in KOL
	String Functions
	String Functions - Syntax

	Working with long integers & Floating Point
	Long Integers & Floating Point - Syntax

	Working with Date and Time
	Date and Time - Syntax

	Files and Folders
	Files and Folders - Syntax

	Working with the Registry
	Registry functions - Syntax

	Working with Windows
	Working with Windows - Syntax

	Messageboxes
	Messageboxes - Syntax

	Clipboard Operations
	Clipboard Operations - Syntax

	Arithmetics, geometry, utilities
	Arithmetics, geometry, utilities - Syntax

	Sorting Data
	Sorting Data - Syntax

	Object Type Hierarchy
	_TObj and TObj objects
	TObj - Syntax

	Object inheritance from TObj
	Event Handlers

	TList Object (Generic List)
	Speeding up work with large Lists
	TList Object - Syntax

	Data Streams in KOL
	Data Streams - Syntax

	List of Strings
	List of Strings - Syntax

	List of Files and Directories
	List of Files and Directories - Syntax

	Tracking Changes on Disk
	Tracking Changes on Disk - Syntax

	INI Files
	INI Files - Syntax

	An Array of Bit Flags
	An Array of Bit Flags - Syntax

	Tree in Memory
	Tree in Memory - Syntax

	Elements of Graphics
	Elements of Graphics - Syntax
	TCanvas - Syntax
	TGraphicTool - Syntax
	Color Conversion - Syntax

	Image in Memory
	The methods and properties of the TBitmap object
	Pixel descriptor and format
	Dimensions
	Loading and Saving
	Drawing an Image in a different Context
	Canvas and modification of your own image through it
	Direct access to pixels and image modification without canvas
	DIB image parameters

	Image in Memory - Syntax

	Pictogram
	Pictogram - Syntax

	List of Images
	The methods and properties of the TImageList object
	Descriptor and parameters
	Image manipulation: add, remove, load
	Accessing images
	Drawing

	List of Images - Syntax

	Before getting started with Visual Objects
	Common Properties and Methods - TControl
	Properties and Methods of window objects
	Window handle
	Parent and Child controls
	Availability and visibility
	Position and dimensions
	Painting
	Window text and font for the window
	Window color and window frame
	Messages (all window objects)
	Dispatching messages in KOL
	Keyboard and tabs between controls
	Mouse and mouse cursor
	Menu and Help
	Form and applet properties, methods, and events
	Appearance (form, applet)
	Messages (form, applet)
	OnFormClick event (for form)

	Modal dialogs
	Reference system

	Common Properties and Methods - Syntax

	Programming in KOL (without MCK)
	MCK Design
	Creation of on MCK project
	Form customization
	Coding

	Application graphic resources
	Graphics Resources and MCK's

	Window Objects
	Labels (label, label effect)
	Panel (Panel, Gradient Panel, Gradient Style)
	Groupbox
	Paintbox
	Imageshow
	Splitter
	Scrollbar
	Progressbar
	Scrollbox
	Buttons
	Switches (Checkbox, Radiobox)
	Visual objects with a list of items
	Text input fields (editbox, memo, richedit)
	Text input field constructors (edit)
	Specifics of using common properties (edit)
	Input field options (edit)
	General properties of input fields (edit)
	Empowering: direct API access (edit)
	Features of Rich Edit
	Mirrored input field classes (edit)

	List of Strings (Listbox)
	Combobox
	General List (List View)
	List Views
	Column management
	Working with items and selection
	Adding and removing items
	Element values and their change
	Location of items
	List view
	Sorting and searching

	Tree View
	Properties of the whole tree
	Adding and removing nodes
	Properties of parent nodes
	Properties of child nodes
	Node attributes: text, icons, states
	Node geometry and drag
	Editing text

	Tool Bar
	General properties, methods, events
	Setting up the ruler
	Button properties
	Some features of working with the toolbar

	Tab Control
	Frames (TKOLFrame)
	Data Module (TKOLDataModule)
	The Form
	"Alien" Panel
	MDI Interface
	DateTime Picker
	Visual objects - Syntax
	Function NewLabel
	Function NewWordWrapLabel
	Function NewLabelEffect
	Function NewPanel
	Function NewGradientPanel
	Function NewGradientPanelEx
	Function NewGroupBox
	Function NewPaintBox
	Function ImageShow
	Function NewSplitter
	Function NewScrollBar
	Function NewProgressBar
	Function NewScrollBox
	Function NewButton
	Function NewBitBtn
	Function NewCheckBox
	Function NewCheckBox3State
	Function NewRadiobox
	Function NewEditBox
	Function NewRichEdit
	Function NewListbox
	Function NewCombobox
	Function NewListView
	Function NewTreeView
	Function NewToolbar
	Function NewTabControl
	Function NewForm
	Function NewApplet
	Function NewMDIClient
	Function NewMDIChild
	Function NewDateTimePicker

	Graphic Visual Elements
	Graphic Label
	Graphic Canvas for Drawing
	Graphic Button
	Graphic Flags
	Graphic Input Field
	XP Themes

	Non-Visual Objects
	Menu (TMenu)
	Events for the entire menu or its child items
	Events, methods, properties of an individual menu item as an object
	Access to properties of subordinate menu items
	Main menu
	Pop-up menu
	Accelerators
	Menu at MCK
	Menu - Syntax

	Tray Icon (TTrayIcon)
	Tray Icon - Syntax

	File Selection Dialog (TopenSaveDialog)
	File Selection Dialog - Syntax

	Directory Selection Dialog (TOpenDirDialog)
	Directory Selection Dialog - Syntax

	Alternative Directory Selection Dialog (TOpenDirDialogEX)
	Alternative Directory Selection Dialog - Syntax

	Color Selection Dialog (TColorDialog)
	Color Selection Dialog - Syntax

	Clock (TTimer)
	Multimedia Timer (TMMTimer)
	Clock - Syntax

	Thread, or thread of commands (TThread)
	Thread - Syntax

	Pseudo Streams
	Action and ActionList
	Action and ActionList - Syntax

	KOL Extensions
	Exception Handling
	Exception Handling - Syntax

	Floating Point Math
	Complex Numbers
	Dialogues
	Font selection
	Find and replace dialog
	System dialogue "About the program"

	Printing and Preparing Reports
	Dialogs for choosing a printer and printing settings.
	Printing reports

	Working with Databases
	KOLEDB
	KOLODBC
	KOLIB
	KOLSQLite
	Working with DBF files and other databases

	Graphics Extensions
	Metafiles WMF, EMF
	Metafiles - Syntax

	JPEG images
	GIF Images, GIFShow, AniShow
	KOLGraphic Library
	Using GDI + (KOLGdiPlus)
	Other image formats
	Additional utilities for working with graphics
	Open GL: KOLOGL12 and OpenGLContext modules

	Sound and Video
	KOLMediaPlayer
	KOLMediaPlayer - Syntax

	PlaySoundXXXX
	KOLMP3
	Other means for working with sound

	Working with Archives
	TCabFile
	TCabFile - Syntax

	KOLZLib
	KOL_UnZip
	KOLZip
	DIUCL
	KOLmdvLZH

	Cryptography
	TwoFish
	KOLMD5
	KOLAES
	KOLCryptoLib

	ActiveX
	Active Script

	OLE and DDE
	KOL DDE
	Drag-n-Drop

	NET
	Sockets and protocols
	Working with ports
	CGI

	System Utilities
	NT services
	Control Panel Applet (CPL)
	Writing your own driver
	NT Privilege Management

	Other Useful Extensions
	Working with shortcuts, registering file extensions
	Sharing memory between applications
	Saving and restoring form properties
	Additional buttons on the title bar
	Macroassembly in memory (PC Asm)
	Collapse Virtual Machine
	FormCompact Property

	Additional Visual Objects
	Progress bar
	Track bar (marked ruler)
	Header (tables)
	Font selection
	Color selection
	Disk selection
	Entering the path to a directory
	Selecting a file name filter
	List of files and directories
	IP Input
	Calendar and date and / or time selection
	Double List
	Two-position button (up-down)
	Button, non-rectangular
	Extended panel
	Label with image
	Separator
	Table
	Syntax highlighting
	GRush Controls
	Other additional visual elements
	Tooltips

	XP Themes
	Extensions of MCK itself
	Improved font customization
	Alternative component icons

	Working with Extensions
	Installing Extensions
	Using Extensions
	Developing your own Extensions
	Development of non-visual extensions
	Development of visual extensions (controls)

	Appendix
	Errors of programmers starting to learn KOL
	Developer Tools
	Demonstration Examples
	KOL with Classes instead of Objects

